IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/5302.html
   My bibliography  Save this paper

Short-Run Italian GDP Forecasting and Real-Time Data

Author

Listed:
  • Golinelli, Roberto
  • Parigi, Giuseppe

Abstract

National accounts statistics undergo a process of revisions over time because of the accumulation of information and, less frequently, of deeper changes, as new definitions, new methodologies etc. are implemented. In this paper we try to characterise the revision process of the data of Italian GDP as published by the national statistical office (ISTAT) in the stream of the noise models literature. The analysis shows that this task can be better accomplished by concentrating on the growth rates of the data instead of the levels. Another issue tackled in the paper concerns the informative content of the preliminary releases vis a vis an intermediate vintage supposed to embody all statistical information (or no longer revisable as far as purely statistical changes are concerned) and the latest vintage of the data, supposed to be the definitive one. The analysis of the news models in differences is based on the comparison of the forecasting performance of the preliminary releases with that of a number of one step ahead forecasts computed from alternative models, ranging from very simple univariate to multivariate specifications based on indicators (bridge models). Results show that, for the intermediate vintage, the preliminary version is the better forecast, while the latest vintage, which embodies statistical as well as definitional revisions, may be better characterised by considering both the preliminary version and the bridge models forecasts.

Suggested Citation

  • Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:5302
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=5302
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    3. Olivier Roodenburg, 2004. "On the predictability of GDP data revisions in the Netherlands," DNB Working Papers 004, Netherlands Central Bank, Research Department.
    4. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    5. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    6. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    7. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    8. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    9. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    10. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    11. Bordignon, Silvano & Trivellato, Ugo, 1989. "The Optimal Use of Provisional Data in Forecasting with Dynamic Model s," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(2), pages 275-286, April.
    12. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    13. Mork, Knut Anton, 1987. "Ain't Behavin': Forecast Errors and Measurement Errors in Early GNP Estimates," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 165-175, April.
    14. Patterson, Kerry D & Heravi, Saeed M, 1991. "Data Revisions and the Expenditure Components of GDP," Economic Journal, Royal Economic Society, vol. 101(407), pages 887-901, July.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    17. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    18. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    19. Patterson, Kerry, 2002. "The Data Measurement Process for UK GNP: Stochastic Trends, Long Memory, and Unit Roots," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(4), pages 245-264, July.
    20. Jens Richard Clausen & Carsten-Patrick Meier, 2005. "Did the Bundesbank Follow a Taylor Rule? An Analysis Based on Real-Time Data," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 141(II), pages 213-246, June.
    21. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    22. Swanson, Norman R. & van Dijk, Dick, 2006. "Are Statistical Reporting Agencies Getting It Right? Data Rationality and Business Cycle Asymmetry," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 24-42, January.
    23. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    24. repec:nsr:niesrd:60 is not listed on IDEAS
    25. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    26. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    27. Lupi, Claudio & Peracchi, Franco, 2003. "The limits of statistical information: How important are GDP revisions in Italy?," Economics & Statistics Discussion Papers esdp03005, University of Molise, Dept. EGSeI.
    28. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    29. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    30. Döpke, Jörg, 2004. "Real-time data and business cycle analysis in Germany," Discussion Paper Series 1: Economic Studies 2004,11, Deutsche Bundesbank.
    31. Sarah Box, 2005. "Real-Time Data and Business Cycle Analysis in Germany," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(3), pages 337-361.
    32. Patterson, K. D., 2003. "Exploiting information in vintages of time-series data," International Journal of Forecasting, Elsevier, vol. 19(2), pages 177-197.
    33. Clausen, Jens R. & Meier, Carsten-Patrick, 2003. "Did the Bundesbank follow a Taylor rule? An analysis based on real-time data," Kiel Working Papers 1180, Kiel Institute for the World Economy (IfW).
    34. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    35. Patterson, K. D., 2000. "Which vintage of data to use when there are multiple vintages of data?: Cointegration, weak exogeneity and common factors," Economics Letters, Elsevier, vol. 69(2), pages 115-121, November.
    36. Trivellato, Ugo & Rettore, Enrico, 1986. "Preliminary Data Errors and Their Impact on the Forecast Error of Simultaneous-Equations Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 445-453, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    2. Paulo Soares Esteves & António Rua, 2012. "Short-term forecasting for the portuguese economy: a methodological overview," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    3. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
    4. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    5. Pierre Siklos, 2006. "What Can We Learn from Comprehensive Data Revisions for Forecasting Inflation: Some US Evidence," Working Papers eg0049, Wilfrid Laurier University, Department of Economics, revised 2006.
    6. Thomas A. Knetsch & Hans-Eggert Reimers, 2009. "Dealing with Benchmark Revisions in Real-Time Data: The Case of German Production and Orders Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 209-235, April.
    7. Bohl, Martin T. & Siklos, Pierre L., 2005. "The Role of Asset Prices in Euro Area Monetary Policy: Specification and Estimation of Policy Rules and Implications for the European Central Bank," Working Paper Series 2005,6, European University Viadrina Frankfurt (Oder), The Postgraduate Research Programme Capital Markets and Finance in the Enlarged Europe.
    8. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    9. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
    10. Esteves, Paulo Soares, 2013. "Direct vs bottom–up approach when forecasting GDP: Reconciling literature results with institutional practice," Economic Modelling, Elsevier, vol. 33(C), pages 416-420.
    11. Jens Hogrefe, 2008. "Forecasting data revisions of GDP: a mixed frequency approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 271-296, August.

    More about this item

    Keywords

    consistent vintages; predictions of 'actual' GDP; preliminary GDP forecasting; real-time data set for Italian GDP;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:5302. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.