IDEAS home Printed from https://ideas.repec.org/p/fth/pensta/04-95-12.html
   My bibliography  Save this paper

A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks

Author

Listed:
  • Swanson, N.R.
  • White, H.

Abstract

We take a model selection approach to the question of whether a class of adaptive prediction models (artificial neural networks) is useful for predicting future values of nine macroeconomic variables. We use a variety of out-of-sample forecast-based model selection criteria, including forecast error measures and forecast direction accuracy. Ex ante or real-time forecasting results based on rolling window prediction methods indicate that multivariate adaptive linear vector autoregression models often outperform a variety of (1) adaptive and nonadaptive univariate models, (2) nonadaptive multivariate models, (3) adaptive nonlinear models, and (4) professionally available survey predictions. Further, model selection based on the in-sample Schwarz information criterion apparently fails to offer a convenient shortcut to true out-of-sample performance measures. © 1997 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
  • Handle: RePEc:fth:pensta:04-95-12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan G., 1994. "A generalization of the non-parametric Henriksson-Merton test of market timing," Economics Letters, Elsevier, vol. 44(1-2), pages 1-7.
    2. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    3. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    4. Stekler, H. O., 1991. "Macroeconomic forecast evaluation techniques," International Journal of Forecasting, Elsevier, vol. 7(3), pages 375-384, November.
    5. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    6. Granger, Clive W J, 1993. "Strategies for Modelling Nonlinear Time-Series Relationships," The Economic Record, The Economic Society of Australia, vol. 69(206), pages 233-238, September.
    7. Victor Zarnowitz & Phillip Braun, 1993. "Twenty-two Years of the NBER-ASA Quarterly Economic Outlook Surveys: Aspects and Comparisons of Forecasting Performance," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 11-94 National Bureau of Economic Research, Inc.
    8. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Meese, Richard A & Rogoff, Kenneth, 1988. " Was It Real? The Exchange Rate-Interest Differential Relation over the Modern Floating-Rate Period," Journal of Finance, American Finance Association, vol. 43(4), pages 933-948, September.
    11. Keane, Michael & Runkle, David E, 1995. "Testing the Rationality of Price Forecasts: Reply," American Economic Review, American Economic Association, vol. 85(1), pages 290-290, March.
    12. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    13. Bruce Mizrach, 1996. "Forecast Comparison in L2," Departmental Working Papers 199524, Rutgers University, Department of Economics.
    14. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    15. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    16. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    17. Sawa, Takamitsu, 1978. "Information Criteria for Discriminating among Alternative Regression Models," Econometrica, Econometric Society, vol. 46(6), pages 1273-1291, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    MACROECONOMICS; ECONOMIC FORECASTING;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:pensta:04-95-12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/depsuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.