IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v79y1997i4p540-550.html

A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks

Author

Listed:
  • Norman R. Swanson
  • Halbert White

Abstract

We take a model selection approach to the question of whether a class of adaptive prediction models (artificial neural networks) is useful for predicting future values of nine macroeconomic variables. We use a variety of out-of-sample forecast-based model selection criteria, including forecast error measures and forecast direction accuracy. Ex ante or real-time forecasting results based on rolling window prediction methods indicate that multivariate adaptive linear vector autoregression models often outperform a variety of (1) adaptive and nonadaptive univariate models, (2) nonadaptive multivariate models, (3) adaptive nonlinear models, and (4) professionally available survey predictions. Further, model selection based on the in-sample Schwarz information criterion apparently fails to offer a convenient shortcut to true out-of-sample performance measures. © 1997 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology

Suggested Citation

  • Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
  • Handle: RePEc:tpr:restat:v:79:y:1997:i:4:p:540-550
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/003465397557123
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:79:y:1997:i:4:p:540-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.