IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks"

by Swanson, N.R. & White, H.

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
  2. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2011. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 1103, University of Nevada, Las Vegas , Department of Economics.
  3. Landajo, Manuel & de Andres, Javier & Lorca, Pedro, 2007. "Robust neural modeling for the cross-sectional analysis of accounting information," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1232-1252, March.
  4. Peter Christoffersen & Eric Ghysels & Norman Swanson, 2000. "Let's Get "Real" About Using Economic Data," Econometric Society World Congress 2000 Contributed Papers 1004, Econometric Society.
  5. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
  6. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
  7. Mototsugu Shintani, 2010. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Levine's Working Paper Archive 506439000000000168, David K. Levine.
  8. Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2008. "Neural networks and genetic algorithms as forecasting tools: a case study on German regions," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 35(4), pages 701-722, July.
  9. Longhi, Simonetta & Nijkamp, Peter, 2006. "Forecasting regional labor market developments under spatial heterogeneity and spatial correlation," Serie Research Memoranda 0015, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  10. Bildirici, Melike & Alp, Aykaç, 2008. "The Relationship Between Wages and Productivity: TAR Unit Root and TAR Cointegration Approach," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 5(1), pages 93-110.
  11. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
  12. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
  13. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
  14. Zhou, Jian, 2014. "Modeling conditional covariance for mixed-asset portfolios," Economic Modelling, Elsevier, vol. 40(C), pages 242-249.
  15. Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
  16. Massimiliano Marcellino, . "Forecast pooling for short time series of macroeconomic variables," Working Papers 212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  17. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
  18. repec:cup:cbooks:9780521779654 is not listed on IDEAS
  19. Malik, Farooq & Nasereddin, Mahdi, 2006. "Forecasting output using oil prices: A cascaded artificial neural network approach," Journal of Economics and Business, Elsevier, vol. 58(2), pages 168-180.
  20. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 130-168.
  21. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
  22. Khurshid M. KIANI & Terry L. KASTENS, 2006. "Using Macro-Financial Variables To Forecast Recessions. An Analysis Of Canada, 1957-2002," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 6(3).
  23. repec:dgr:uvatin:20050041 is not listed on IDEAS
  24. Yang, Jian & Su, Xiaojing & Kolari, James W., 2008. "Do Euro exchange rates follow a martingale? Some out-of-sample evidence," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 729-740, May.
  25. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: an Analysis of German Labour Markets," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 7-30.
  26. Oliver Blaskowitz & Helmut Herwatz, 2008. "Adaptive Forecasting of the EURIBOR Swap Term Structure," SFB 649 Discussion Papers SFB649DP2008-017, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  27. Tkacz, Greg & Hu, Sarah, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Working Papers 99-3, Bank of Canada.
  28. Andreas Karatahansopoulos & Georgios Sermpinis & Jason Laws & Christian Dunis, 2014. "Modelling and Trading the Greek Stock Market with Gene Expression and Genetic Programing Algorithms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 596-610, December.
  29. Roberto Golinelli & Giuseppe Parigi, 2013. "Tracking world trade and GDP in real time," Temi di discussione (Economic working papers) 920, Bank of Italy, Economic Research and International Relations Area.
  30. Oliver Blaskowitz & Helmut Herwartz, 2008. "Testing directional forecast value in the presence of serial correlation," SFB 649 Discussion Papers SFB649DP2008-073, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  31. Yvon Fauvel & Alain Paquet & Christian Zimmermann, 1999. "A Survey on Interest Rate Forecasting," Cahiers de recherche CREFE / CREFE Working Papers 87, CREFE, Université du Québec à Montréal.
  32. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, Elsevier.
  33. Ferland, Rene & Lalancette, Simon, 2006. "Dynamics of realized volatilities and correlations: An empirical study," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2109-2130, July.
  34. Marcellino, Massimiliano, 2002. "Instability and Non-Linearity in the EMU," CEPR Discussion Papers 3312, C.E.P.R. Discussion Papers.
  35. Dean Croushore & Tom Stark, 2000. "A real-time data set for macroeconomists: does data vintage matter for forecasting?," Working Papers 00-6, Federal Reserve Bank of Philadelphia.
  36. Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
  37. Lance J. Bachmeier & Norman R. Swanson, 2005. "Predicting Inflation: Does The Quantity Theory Help?," Economic Inquiry, Western Economic Association International, vol. 43(3), pages 570-585, July.
  38. Eric Ghysels & Norman R. Swanson & Myles Callan, 2002. "Monetary Policy Rules with Model and Data Uncertainty," Southern Economic Journal, Southern Economic Association, vol. 69(2), pages 239-265, October.
  39. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Society for Computational Economics, vol. 32(4), pages 383-406, November.
  40. Kiani, K.M., 2009. "Neural Networks to Detect Nonlinearities in Time Series: Analysis of Business Cycle in France and the United Kingdom," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 9(1).
  41. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
  42. Hui Feng, 2005. "Real-Time or Current Vintage: Does the Type of Data Matter for Forecasting and Model Selection?," Econometrics Working Papers 0515, Department of Economics, University of Victoria.
  43. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
  44. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
  45. Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
  46. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, issue Q 4, pages 4-20.
  47. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
  48. Kala Krishna & Ataman Ozyildirim & Norman R. Swanson, 1998. "Trade, Investment, and Growth: Nexus, Analysis, and Prognosis," NBER Working Papers 6861, National Bureau of Economic Research, Inc.
  49. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
  50. M. Ali Choudhary & Adnan Haider, 2012. "Neural network models for inflation forecasting: an appraisal," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
  51. Chen Zhuo & Yang Yuhong, 2007. "Time Series Models for Forecasting: Testing or Combining?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 56-90, March.
  52. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Georgios Sermpinis & Charalampos Stasinakis & Konstantinos Theofilatos & Andreas Karathanasopoul, 2014. "Inflation and Unemployment Forecasting with Genetic Support Vector Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 471-487, 09.
  53. Dean Croushore, 2008. "Frontiers of real-time data analysis," Working Papers 08-4, Federal Reserve Bank of Philadelphia.
  54. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  55. Low, Rand Kwong Yew & Alcock, Jamie & Faff, Robert & Brailsford, Timothy, 2013. "Canonical vine copulas in the context of modern portfolio management: Are they worth it?," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3085-3099.
  56. Qin, Ting & Enders, Walter, 2008. "In-sample and out-of-sample properties of linear and nonlinear Taylor rules," Journal of Macroeconomics, Elsevier, vol. 30(1), pages 428-443, March.
  57. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
  58. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Society for Computational Economics, vol. 40(3), pages 245-264, October.
  59. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
  60. Farzan Aminian & E. Suarez & Mehran Aminian & Daniel Walz, 2006. "Forecasting Economic Data with Neural Networks," Computational Economics, Society for Computational Economics, vol. 28(1), pages 71-88, August.
  61. A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
  62. María Clara Aristizábal Restrepo, . "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
  63. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
  64. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
  65. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, School of Economics and Management, University of Aarhus.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.