IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting Binary Outcomes

  • Kajal Lahiri
  • Liu Yang

Binary events are involved in many economic decision problems. In recent years, considerable progress has been made in diverse disciplines in developing models for forecasting binary outcomes. We distinguish between two types of forecasts for binary events that are generally obtained as the output of regression models: probability forecasts and point forecasts. We summarize specification, estimation, and evaluation of binary response models for the purpose of forecasting in a unified framework which is characterized by the joint distribution of forecasts and actuals, and a general loss function. Analysis of both the skill and the value of probability and point forecasts can be carried out within this framework. Parametric, semiparametric, nonparametric, and Bayesian approaches are covered. The emphasis is on the basic intuitions underlying each methodology, abstracting away from the mathematical details.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.albany.edu/economics/research/workingp/2012/lahiriyang.pdf
Download Restriction: no

Paper provided by University at Albany, SUNY, Department of Economics in its series Discussion Papers with number 12-09.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:nya:albaec:12-09
Contact details of provider: Postal:
Department of Economics, BA 110 University at Albany State University of New York Albany, NY 12222 U.S.A.

Phone: (518) 442-4735
Fax: (518) 442-4736

Order Information: Postal: Department of Economics, BA 110 University at Albany State University of New York Albany, NY 12222 U.S.A.
Web: http://www.albany.edu/economics/research/workingp/index.shtml Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Michael Clements, 2006. "Evaluating the survey of professional forecasters probability distributions of expected inflation based on derived event probability forecasts," Empirical Economics, Springer, vol. 31(1), pages 49-64, March.
  2. George Monokroussos, 2011. "Dynamic Limited Dependent Variable Modeling and U.S. Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 519-534, 03.
  3. Glenn D. Rudebusch & John C. Williams, 2007. "Forecasting recessions: the puzzle of the enduring power of the yield curve," Working Paper Series 2007-16, Federal Reserve Bank of San Francisco.
  4. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
  5. West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
  6. Imbens, G.W., 1990. "An Efficient Method Of Moments Estimator For Descrete Choice Models With Choice-Based Sampling," Papers 9009, Tilburg - Center for Economic Research.
  7. Pesaran, M.H. & Timmermann, A., 2006. "Testing Dependence Among Serially Correlated Multi-category Variables," Cambridge Working Papers in Economics 0648, Faculty of Economics, University of Cambridge.
  8. Donkers, A.C.D. & Melenberg, B., 2002. "Testing predictive performance of binary choice models," Econometric Institute Research Papers EI 2002-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  9. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, 07.
  10. Grammig, Joachim & Kehrle, Kerstin, 2008. "A new marked point process model for the federal funds rate target: Methodology and forecast evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2370-2396, July.
  11. Lahiri, Kajal & Monokroussos, George & Zhao, Yongchen, 2013. "The yield spread puzzle and the information content of SPF forecasts," Economics Letters, Elsevier, vol. 118(1), pages 219-221.
  12. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
  13. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
  14. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
  15. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
  16. Lovell, Michael C, 1986. "Tests of the Rational Expectations Hypothesis," American Economic Review, American Economic Association, vol. 76(1), pages 110-24, March.
  17. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
  18. Michael P. Clements, 2011. "An Empirical Investigation of the Effects of Rounding on the SPF Probabilities of Decline and Output Growth Histograms," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(1), pages 207-220, 02.
  19. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
  20. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
  21. Caudill, Steven B., 2003. "Predicting discrete outcomes with the maximum score estimator: the case of the NCAA men's basketball tournament," International Journal of Forecasting, Elsevier, vol. 19(2), pages 313-317.
  22. Deutsch, Melinda & Granger, Clive W. J. & Terasvirta, Timo, 1994. "The combination of forecasts using changing weights," International Journal of Forecasting, Elsevier, vol. 10(1), pages 47-57, June.
  23. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355, 06-2016.
  24. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
  25. Marcelle Chauvet & Simon M. Potter, 2001. "Forecasting recessions using the yield curve," Staff Reports 134, Federal Reserve Bank of New York.
  26. Amemiya, Takeshi & Vuong, Quang H, 1987. "A Comparison of Two Consistent Estimators in the Choice-based Sampling Qualitative Response Model," Econometrica, Econometric Society, vol. 55(3), pages 699-702, May.
  27. James D. Hamilton & Oscar Jorda, 2000. "A Model for the Federal Funds Rate Target," NBER Working Papers 7847, National Bureau of Economic Research, Inc.
  28. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-30, November.
  29. Jose A. Lopez, 1995. "Evaluating the predictive accuracy of volatility models," Research Paper 9524, Federal Reserve Bank of New York.
  30. Arturo Estrella & Frederic S. Mishkin, 1995. "Predicting U.S. Recessions: Financial Variables as Leading Indicators," NBER Working Papers 5379, National Bureau of Economic Research, Inc.
  31. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, December.
  32. Joon Y. Park & Peter C. B. Phillips, 2000. "Nonstationary Binary Choice," Econometrica, Econometric Society, vol. 68(5), pages 1249-1280, September.
  33. Meese, R. & Rogoff, K., 1988. "Was It Real? The Exchange Rate-Interest Differential Ralation Over The Modern Floating-Rate Period," Working papers 368, Wisconsin Madison - Social Systems.
  34. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
  35. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91.
  36. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  37. Manski, Charles F. & Thompson, T. Scott, 1989. "Estimation of best predictors of binary response," Journal of Econometrics, Elsevier, vol. 40(1), pages 97-123, January.
  38. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
  39. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-77, April.
  40. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
  41. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  42. Oliver Blaskowitz & Helmut Herwartz, 2009. "Adaptive forecasting of the EURIBOR swap term structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 575-594.
  43. Imbens, G.W. & Lancaster, T., 1991. "Efficient estimation and stratified sampling," Discussion Paper 1991-45, Tilburg University, Center for Economic Research.
  44. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  45. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 225-238.
  46. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-75, July.
  47. Gourieroux, Christian & Monfort, Alain, 1993. "Simulation-based inference : A survey with special reference to panel data models," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 5-33, September.
  48. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-88, November.
  49. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
  50. Lee, Lung-Fei, 1992. "On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models," Econometric Theory, Cambridge University Press, vol. 8(04), pages 518-552, December.
  51. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
  52. Marcellino, Massimiliano, 2002. "Forecasting EMU Macroeconomic Variables," CEPR Discussion Papers 3529, C.E.P.R. Discussion Papers.
  53. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  54. Arellano, M & Carrasco, R, 1996. "Binary Choice Panel Data Models with Predetermined Variables," Papers 9618, Centro de Estudios Monetarios Y Financieros-.
  55. Arturo Estrella, 1997. "A new measure of fit for equations with dichotomous dependent variables," Research Paper 9716, Federal Reserve Bank of New York.
  56. Oliver Blaskowitz & Helmut Herwartz, 2008. "Testing directional forecast value in the presence of serial correlation," SFB 649 Discussion Papers SFB649DP2008-073, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  57. Heikki Kauppi, 2012. "Predicting the Direction of the Fed's Target Rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(1), pages 47-67, 01.
  58. Bontemps, Christophe & Racine, Jeffrey S. & Simioni, Michel, 2009. "Nonparametric vs parametric binary choice models: An empirical investigation," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49286, Agricultural and Applied Economics Association.
  59. Mark Greer, 2005. "Combination forecasting for directional accuracy: An application to survey interest rate forecasts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(6), pages 607-615.
  60. Merton, Robert C, 1981. "On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts," The Journal of Business, University of Chicago Press, vol. 54(3), pages 363-406, July.
  61. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(01), pages 176-222, February.
  62. Clemon, Robert T & Winkler, Robert L, 1986. "Combining Economic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 39-46, January.
  63. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  64. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318 Elsevier.
  65. Clements, Michael P., 2008. "Consensus and uncertainty: Using forecast probabilities of output declines," International Journal of Forecasting, Elsevier, vol. 24(1), pages 76-86.
  66. Ling Hu & Peter C.B. Phillips, 2002. "Nonstationary Discrete Choice," Cowles Foundation Discussion Papers 1364, Cowles Foundation for Research in Economics, Yale University.
  67. Andrew Patton, 2004. "Modelling Asymmetric Exchange Rate Dependence," Working Papers wp04-04, Warwick Business School, Finance Group.
  68. Jeffrey S. Racine & Christopher F. Parmeter, 2012. "Data-Driven Model Evaluation: A Test for Revealed Performance," Department of Economics Working Papers 2012-13, McMaster University.
  69. Don Harding & Adrian Pagan, 2009. "An Econometric Analysis Of Some Models For Constructed Binary Time Series," CAMA Working Papers 2009-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  70. Göran Therborn & K.C. Ho, 2009. "Introduction," City, Taylor & Francis Journals, vol. 13(1), pages 53-62, March.
  71. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
  72. Lili Hao & Eric C.Y. Ng, 2011. "Predicting Canadian recessions using dynamic probit modelling approaches," Canadian Journal of Economics, Canadian Economics Association, vol. 44(4), pages 1297-1330, November.
  73. Jing Yang & Nikola Gradojevic, 2006. "Non-linear, non-parametric, non-fundamental exchange rate forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 227-245.
  74. Oliver Blaskowitz & Helmut Herwartz, 2009. "On economic evaluation of directional forecasts," SFB 649 Discussion Papers SFB649DP2009-052, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  75. Chiara Scotti, 2011. "A Bivariate Model of Federal Reserve and ECB Main Policy Rates," International Journal of Central Banking, International Journal of Central Banking, vol. 7(3), pages 37-78, September.
  76. Haerdle,Wolfgang & Stoker,Thomas, 1987. "Investigations smooth multiple regression by the method of average derivatives," Discussion Paper Serie A 107, University of Bonn, Germany.
  77. Lahiri, Kajal & Teigland, Christie & Zaporowski, Mark, 1988. "Interest Rates and the Subjective Probability Distribution of Inflation Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 20(2), pages 233-48, May.
  78. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-65, October.
  79. Gozalo, Pedro & Linton, Oliver, 2000. "Local nonlinear least squares: Using parametric information in nonparametric regression," Journal of Econometrics, Elsevier, vol. 99(1), pages 63-106, November.
  80. Lieli, Robert P. & Nieto-Barthaburu, Augusto, 2010. "Optimal Binary Prediction for Group Decision Making," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 308-319.
  81. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
  82. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  83. Koenker, Roger & Yoon, Jungmo, 2009. "Parametric links for binary choice models: A Fisherian-Bayesian colloquy," Journal of Econometrics, Elsevier, vol. 152(2), pages 120-130, October.
  84. Markus Frölich, 2006. "Non-parametric regression for binary dependent variables," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 511-540, November.
  85. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
  86. John W. Galbraith & Simon van Norden, 2012. "Assessing gross domestic product and inflation probability forecasts derived from Bank of England fan charts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(3), pages 713-727, 07.
  87. Granger, Clive W. J. & Jeon, Yongil, 2004. "Thick modeling," Economic Modelling, Elsevier, vol. 21(2), pages 323-343, March.
  88. Joseph Engelberg & Charles F. Manski & Jared Williams, 2011. "Assessing the temporal variation of macroeconomic forecasts by a panel of changing composition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(7), pages 1059-1078, November.
  89. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
  90. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
  91. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
  92. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-81, November.
  93. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268.
  94. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
  95. Graham, John R, 1996. "Is a Group of Economists Better than One? Than None?," The Journal of Business, University of Chicago Press, vol. 69(2), pages 193-232, April.
  96. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  97. Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, EconWPA.
  98. Robert P. Lieli & Michael Springborn, 2013. "Closing the Gap between Risk Estimation and Decision Making: Efficient Management of Trade-Related Invasive Species Risk," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 632-645, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nya:albaec:12-09. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (John Bailey Jones)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.