IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v175y2012i3p713-727.html
   My bibliography  Save this article

Assessing gross domestic product and inflation probability forecasts derived from Bank of England fan charts

Author

Listed:
  • John W. Galbraith
  • Simon van Norden

Abstract

No abstract is available for this item.

Suggested Citation

  • John W. Galbraith & Simon van Norden, 2012. "Assessing gross domestic product and inflation probability forecasts derived from Bank of England fan charts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(3), pages 713-727, July.
  • Handle: RePEc:bla:jorssa:v:175:y:2012:i:3:p:713-727
    DOI: j.1467-985X.2011.01012.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-985X.2011.01012.x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McDonald, Christopher & Thamotheram, Craig & Vahey, Shaun P. & Wakerly, Elizabeth C., 2015. "Assessing the Economic Value of Probabilistic Forecasts in the Presence of an Inflation Target," EMF Research Papers 09, Economic Modelling and Forecasting Group.
    2. Simon van Norden, 2015. "Estimates of Québec’s Growth Uncertainty," CIRANO Project Reports 2015rp-01, CIRANO.
    3. Carlos Diaz Vela, 2016. "Extracting the Information Shocks from the Bank of England Inflation Density Forecasts," Discussion Papers in Economics 16/13, Department of Economics, University of Leicester.
    4. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Too many skew normal distributions? The practitioner’s perspective," Discussion Papers in Economics 13/07, Department of Economics, University of Leicester.
    5. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    6. Schreiber, Sven & Soldatenkova, Natalia, 2016. "Anticipating business-cycle turning points in real time using density forecasts from a VAR," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 166-187.
    7. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Probability Forecasting for Inflation Warnings from the Federal Reserve," EMF Research Papers 07, Economic Modelling and Forecasting Group.
    8. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:175:y:2012:i:3:p:713-727. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.