IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Anticipating business-cycle turning points in real time using density forecasts from a VAR

  • Schreiber, Sven

For the timely detection of business-cycle turning points we suggest to use mediumsized linear systems (subset VARs with automated zero restrictions) to forecast the relevant underlying variables, and to derive the probability of the turning point from the forecast density as the probability mass below (or above) a given threshold value. We show how this approach can be used in real time in the presence of data publication lags and how it can capture the part of the data revision process that is systematic. Then we apply the method to US and German monthly data. In an out-of-sample exercise (for 2007-2012/13) the turning points can be signalled before the official data publication confirms them (but not before they happened in reality).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Free University Berlin, School of Business & Economics in its series Discussion Papers with number 2014/2.

in new window

Date of creation: 2014
Date of revision:
Handle: RePEc:zbw:fubsbe:20142
Contact details of provider: Postal: Garystr. 21, 14195 Berlin (Dahlem)
Phone: (030) 838 2272
Fax: (030) 838 2129
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
  2. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
  3. Banbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
  4. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
  5. Christian R. Proaño & Thomas Theobald, 2012. "Predicting German Recessions with a Composite Real-Time Dynamic Probit Indicator," Working Papers 1205, New School for Social Research, Department of Economics.
  6. Jeremy J. Nalewaik, 2012. "Estimating Probabilities of Recession in Real Time Using GDP and GDI," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 235-253, 02.
  7. James D. Hamilton, 2010. "Calling Recessions in Real Time," NBER Working Papers 16162, National Bureau of Economic Research, Inc.
  8. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
  9. West, Kenneth D, 1988. "Asymptotic Normality, When Regressors Have a Unit Root," Econometrica, Econometric Society, vol. 56(6), pages 1397-1417, November.
  10. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  11. Thomas Theobald, 2012. "Real-time Markov Switching and Leading Indicators in Times of the Financial Crisis," IMK Working Paper 98-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
  12. John W. Galbraith & Simon van Norden, 2012. "Assessing gross domestic product and inflation probability forecasts derived from Bank of England fan charts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(3), pages 713-727, 07.
  13. Österholm, Pär, 2012. "The limited usefulness of macroeconomic Bayesian VARs when estimating the probability of a US recession," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 76-86.
  14. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  15. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:zbw:fubsbe:20142. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.