IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics

  • Koop, Gary
  • Korobilis, Dimitris

Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as time-varying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus, over-parameterization problems may arise. Bayesian methods have become increasingly popular as a way of overcoming these problems. In this monograph, we discuss VARs, factor augmented VARs and time-varying parameter extensions and show how Bayesian inference proceeds. Apart from the simplest of VARs, Bayesian inference requires the use of Markov chain Monte Carlo methods developed for state space models and we describe these algorithms. The focus is on the empirical macroeconomist and we offer advice on how to use these models and methods in practice and include empirical illustrations. A website provides Matlab code for carrying out Bayesian inference in these models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/20125/1/MPRA_paper_20125.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 20125.

as
in new window

Length:
Date of creation: 27 Sep 2009
Date of revision:
Handle: RePEc:pra:mprapa:20125
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  2. Paap, Richard & van Dijk, Herman K, 2003. "Bayes Estimates of Markov Trends in Possibly Cointegrated Series: An Application to U.S. Consumption and Income," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 547-63, October.
  3. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1986. "Forecasting and conditional projection using realistic prior distribution," Staff Report 93, Federal Reserve Bank of Minneapolis.
  4. Fabio Canova & Matteo Ciccarelli, 2009. "Estimating Multicountry Var Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 929-959, 08.
  5. Marco Del Negro & Frank Schorfheide, 2002. "Priors from general equilibrium models for VARs," FRB Atlanta Working Paper No. 2002-14, Federal Reserve Bank of Atlanta.
  6. Francesco Belviso & Fabio Milani, 2005. "Structural Factor-Augmented VAR (SFAVAR) and the Effects of Monetary Policy," Macroeconomics 0503023, EconWPA.
  7. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  8. Fabio Canova & Matteo Ciccarelli, 2000. "Forecasting And Turning Point Predictions In A Bayesian Panel Var Model," Working Papers. Serie AD 2000-05, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  9. Koop, Gary M & Poirier, Dale J & Tobias, Justin, 2007. "Bayesian Econometric Methods," Staff General Research Papers 12722, Iowa State University, Department of Economics.
  10. Sungbae An & Frank Schorfheide, 2006. "Bayesian analysis of DSGE models," Working Papers 06-5, Federal Reserve Bank of Philadelphia.
  11. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  12. Ballabriga, Fernando & Sebastian, Miguel & Valles, Javier, 1999. "European asymmetries," Journal of International Economics, Elsevier, vol. 48(2), pages 233-253, August.
  13. Christopher A. Sims, 1992. "A Nine Variable Probabilistic Macroeconomic Forecasting Model," Cowles Foundation Discussion Papers 1034, Cowles Foundation for Research in Economics, Yale University.
  14. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
  15. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
  16. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  17. Giordani, Paolo & Kohn, Robert, 2006. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Working Paper Series 196, Sveriges Riksbank (Central Bank of Sweden).
  18. Matteo Ciccarelli & Alessandro Rebucci, 2002. "The Transmission Mechanism of European Monetary Policy: Is There Heterogeneity? Is it Changing over Time?," IMF Working Papers 02/54, International Monetary Fund.
  19. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
  20. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
  21. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  22. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-68, November.
  23. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  24. Giordani, P. & Kohn, R. & van Dijk, D.J.C., 2005. "A unified approach to nonlinearity, structural change and outliers," Econometric Institute Research Papers EI 2005-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  25. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
  26. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
  27. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, 04.
  28. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
  29. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
  30. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
  31. Esfandiar Maasoumi & Michael McAleer, 2006. "Multivariate Stochastic Volatility: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 139-144.
  32. Jean Boivin & Marc P. Giannoni, 2003. "Has Monetary Policy Become More Effective?," NBER Working Papers 9459, National Bureau of Economic Research, Inc.
  33. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
  34. Thomas Lubik & Frank Schorfheide, 2002. "Testing for Indeterminacy:An Application to U.S. Monetary Policy," Economics Working Paper Archive 480, The Johns Hopkins University,Department of Economics, revised Jun 2003.
  35. Mario Forni & Lucrezia Reichlin, 1998. "Let's get real: a factor analytical approach to disaggregated business cycle dynamics," ULB Institutional Repository 2013/10147, ULB -- Universite Libre de Bruxelles.
  36. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
  37. Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
  38. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, June.
  39. Otrok, Christopher & Whiteman, Charles H, 1998. "Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 997-1014, November.
  40. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  41. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-20, January.
  42. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  43. Kim, Sangjoon & Shephard, Neil & Chib, Siddhartha, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 361-93, July.
  44. Koop, G, 1992. "Aggregate Shocks and Macroeconomic Fluctuations: A Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(4), pages 395-411, Oct.-Dec..
  45. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
  46. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  47. Neil Shephard & Siddhartha Chib, 1999. "Analysis of High Dimensional Multivariate Stochastic Volatility Models," Economics Series Working Papers 1999-W18, University of Oxford, Department of Economics.
  48. Gabriele Fiorentini & Enrique Sentana Iváñez, 1997. "Identification, estimation and testing of conditionally heteroskedastic factor models," Working Papers. Serie AD 1997-22, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  49. Fabio Canova & Luca Gambetti, 2003. "Structural changes in the US economy: is there a role for monetary policy?," Economics Working Papers 918, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2008.
  50. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  51. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  52. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
  53. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-87.
  54. Korobilis, Dimitris, 2008. "Forecasting in vector autoregressions with many predictors," MPRA Paper 21122, University Library of Munich, Germany.
  55. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  56. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
  57. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
  58. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
  59. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20125. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.