IDEAS home Printed from https://ideas.repec.org/a/eee/moneco/v50y2003i3p525-546.html
   My bibliography  Save this article

Monetary policy in a data-rich environment

Author

Listed:
  • Bernanke, Ben S.
  • Boivin, Jean

Abstract

Most empirical analyses of monetary policy have been confined to frameworks in which the Federal Reserve is implicitly assumed to exploit only a limited amount of information, despite the fact that the Fed actively monitors literally thousands of economic time series. This article explores the feasibility of incorporating richer information sets into the analysis, both positive and normative, of Fed policymaking. We employ a factor-model approach, developed by Stock and Watson (1999a,b), that permits the systematic information in large data sets to be summarized by relatively few estimated factors. With this framework, we reconfirm Stock and Watson's result that the use of large data sets can improve forecast accuracy, and we show that this result does not seem to depend on the use of finally revised (as opposed to 'real-time') data. We estimate policy reaction functions for the Fed that take into account its data-rich environment and provide a test of the hypothesis that Fed actions are explained solely by its forecasts of inflation and real activity. Finally, we explore the possibility of developing an 'expert system' that could aggregate diverse information and provide benchmark policy settings.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  • Handle: RePEc:eee:moneco:v:50:y:2003:i:3:p:525-546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-3932(03)00024-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Reichlin, Lucrezia, 1996. "Dynamic Common Factors in Large Cross-Sections," Empirical Economics, Springer, vol. 21(1), pages 27-42.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    3. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 285-310, National Bureau of Economic Research, Inc.
    4. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Thomas Knox & James H. Stock & Mark W. Watson, 2000. "Empirical Bayes Forecasts of One Time Series Using Many Predictors," Econometric Society World Congress 2000 Contributed Papers 1421, Econometric Society.
    7. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    8. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    9. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    10. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    11. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    12. Nicoletta Batini & Andrew Haldane, 1999. "Forward-Looking Rules for Monetary Policy," NBER Chapters, in: Monetary Policy Rules, pages 157-202, National Bureau of Economic Research, Inc.
    13. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    14. Eric Ghysels & Norman R. Swanson & Myles Callan, 2002. "Monetary Policy Rules with Model and Data Uncertainty," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 239-265, October.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    17. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    18. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    19. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    20. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, March.
    21. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    22. John B. Taylor, 1999. "Monetary Policy Rules," NBER Books, National Bureau of Economic Research, Inc, number tayl99-1.
    23. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    24. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    25. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    2. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
    3. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    6. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    7. Croushore, Dean & Evans, Charles L., 2006. "Data revisions and the identification of monetary policy shocks," Journal of Monetary Economics, Elsevier, vol. 53(6), pages 1135-1160, September.
    8. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    9. Eric M. Leeper & Jennifer E. Roush, 2003. "Putting \\"M\\" back in monetary policy," Proceedings, Federal Reserve Bank of Cleveland, pages 1217-1264.
    10. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    11. Forni, Mario & Lippi, Marco & Reichlin, Lucrezia, 2003. "Opening the Black Box: Structural Factor Models versus Structural VARs," CEPR Discussion Papers 4133, C.E.P.R. Discussion Papers.
    12. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    13. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    14. Pao‐Lin Tien & Tara M. Sinclair & Edward N. Gamber, 2021. "Do Fed Forecast Errors Matter?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 686-712, June.
    15. Orphanides, Athanasios, 2003. "Historical monetary policy analysis and the Taylor rule," Journal of Monetary Economics, Elsevier, vol. 50(5), pages 983-1022, July.
    16. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    17. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    18. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    19. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    20. Bjørnland, Hilde C. & Leitemo, Kai, 2009. "Identifying the interdependence between US monetary policy and the stock market," Journal of Monetary Economics, Elsevier, vol. 56(2), pages 275-282, March.

    More about this item

    JEL classification:

    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:moneco:v:50:y:2003:i:3:p:525-546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/505566 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505566 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.