IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Monetary policy in a data-rich environment

  • Bernanke, Ben S.
  • Boivin, Jean

Most empirical analyses of monetary policy have been confined to frameworks in which the Federal Reserve is implicitly assumed to exploit only a limited amount of information, despite the fact that the Fed actively monitors literally thousands of economic time series. This article explores the feasibility of incorporating richer information sets into the analysis, both positive and normative, of Fed policymaking. We employ a factor-model approach, developed by Stock and Watson (1999a,b), that permits the systematic information in large data sets to be summarized by relatively few estimated factors. With this framework, we reconfirm Stock and Watson's result that the use of large data sets can improve forecast accuracy, and we show that this result does not seem to depend on the use of finally revised (as opposed to 'real-time') data. We estimate policy reaction functions for the Fed that take into account its data-rich environment and provide a test of the hypothesis that Fed actions are explained solely by its forecasts of inflation and real activity. Finally, we explore the possibility of developing an 'expert system' that could aggregate diverse information and provide benchmark policy settings.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VBW-48HY03B-2/2/e9f521bd962f03af88c56b6e5ab16a01
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Monetary Economics.

Volume (Year): 50 (2003)
Issue (Month): 3 (April)
Pages: 525-546

as
in new window

Handle: RePEc:eee:moneco:v:50:y:2003:i:3:p:525-546
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505566

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Thomas Knox & James H. Stock & Mark W. Watson, 2001. "Empirical Bayes Forecasts of One Time Series Using Many Predictors," NBER Technical Working Papers 0269, National Bureau of Economic Research, Inc.
  2. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  3. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 1997. "Monetary policy shocks: what have we learned and to what end?," Working Paper Series, Macroeconomic Issues WP-97-18, Federal Reserve Bank of Chicago.
  4. Danny Quah & Thomas J. Sargent, 1992. "A dynamic index model for large cross sections," Discussion Paper / Institute for Empirical Macroeconomics 77, Federal Reserve Bank of Minneapolis.
  5. Dean Croushore & Tom Stark, 1999. "A real-time data set for marcoeconomists: does the data vintage matter?," Working Papers 99-21, Federal Reserve Bank of Philadelphia.
  6. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  7. Athanasios Orphanides, 1998. "Monetary policy rules based on real-time data," Finance and Economics Discussion Series 1998-03, Board of Governors of the Federal Reserve System (U.S.).
  8. Forni, Mario & Reichlin, Lucrezia, 1996. "Dynamic Common Factors in Large Cross-Sections," Empirical Economics, Springer, vol. 21(1), pages 27-42.
  9. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  10. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
  11. Clarida, R. & Gali, J. & Gertler, M., 1998. "Monetary Policy Rules and Macroeconomic Stability: Evidence and some Theory," Working Papers 98-01, C.V. Starr Center for Applied Economics, New York University.
  12. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
  13. Nicoletta Batini & Andrew G Haldane, 1999. "Forward-looking rules for monetary policy," Bank of England working papers 91, Bank of England.
  14. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
  15. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
  16. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  17. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
  18. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  19. Eric Ghysels & Norman R. Swanson & Myles Callan, 2002. "Monetary Policy Rules with Model and Data Uncertainty," Southern Economic Journal, Southern Economic Association, vol. 69(2), pages 239-265, October.
  20. John B. Taylor, 1999. "Monetary Policy Rules," NBER Books, National Bureau of Economic Research, Inc, number tayl99-1, June.
  21. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
  22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:moneco:v:50:y:2003:i:3:p:525-546. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.