IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/11467.html
   My bibliography  Save this paper

Implications of Dynamic Factor Models for VAR Analysis

Author

Listed:
  • James H. Stock
  • Mark W. Watson

Abstract

This paper considers VAR models incorporating many time series that interact through a few dynamic factors. Several econometric issues are addressed including estimation of the number of dynamic factors and tests for the factor restrictions imposed on the VAR. Structural VAR identification based on timing restrictions, long run restrictions, and restrictions on factor loadings are discussed and practical computational methods suggested. Empirical analysis using U.S. data suggest several (7) dynamic factors, rejection of the exact dynamic factor model but support for an approximate factor model, and sensible results for a SVAR that identifies money policy shocks using timing restrictions.

Suggested Citation

  • James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:11467
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w11467.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Martin Eichenbaum & Charles L. Evans, 1995. "Some Empirical Evidence on the Effects of Shocks to Monetary Policy on Exchange Rates," The Quarterly Journal of Economics, Oxford University Press, vol. 110(4), pages 975-1009.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters,in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
    4. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 285-310 National Bureau of Economic Research, Inc.
    5. Carlo A. Favero & Massimiliano Marcellino, "undated". "Large Datasets, Small Models and Monetary Policy in Europe," Working Papers 208, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
    8. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
    9. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    10. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    11. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    12. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    13. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 179-212 National Bureau of Economic Research, Inc.
    14. Olivier J. Blanchard & Mark W. Watson, 1986. "Are Business Cycles All Alike?," NBER Chapters,in: The American Business Cycle: Continuity and Change, pages 123-180 National Bureau of Economic Research, Inc.
    15. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    16. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    17. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    18. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    19. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    20. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    21. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    22. John B. Taylor, 1999. "Monetary Policy Rules," NBER Books, National Bureau of Economic Research, Inc, number tayl99-1, July.
    23. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    24. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    25. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    26. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    27. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:11467. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.