IDEAS home Printed from https://ideas.repec.org/a/oec/stdkab/5jz417f7b7nv.html
   My bibliography  Save this article

Dynamic factor models: A review of the literature

Author

Listed:
  • Karim Barhoumi
  • Olivier Darné
  • Laurent Ferrara

    ()

Abstract

In the last few years, the growth in the amount of economic and financial data available has prompted econometricians to develop or adapt new methods enabling them to summarise efficiently the information contained in large databases. Of these methods, dynamic factor models have seen rapid growth and become very popular among macroeconomists. In this paper, we carry out a survey of recent literature on dynamic factor models. We start by presenting the models used before looking at parameter estimation methods and statistical tests available for choosing the number of factors. We then focus on recent empirical applications dealing with the construction of economic outlook indicators, macroeconomic forecasts, and both macroeconomic and monetary policy analyses.

Suggested Citation

  • Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
  • Handle: RePEc:oec:stdkab:5jz417f7b7nv
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1787/jbcma-2013-5jz417f7b7nv
    Download Restriction: Full text available to READ online. PDF download available to OECD iLibrary subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Igor Masten & Massimiliano Marcellino & Anindya Banerjeey, 2009. "Forecasting with Factor-augmented Error Correction Models," RSCAS Working Papers 2009/32, European University Institute.
    2. Guillaume Chevillon, 2007. "Direct Multi-Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, pages 589-612.
    5. Matthieu Cornec & Thierry Deperraz, 2006. "Un nouvel indicateur synthétique mensuel résumant le climat des affaires dans les services en France," Économie et Statistique, Programme National Persée, vol. 395(1), pages 13-38.
    6. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, pages 350-384.
    7. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    8. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    9. L. Clavel & C. Minodier, 2009. "A Monthly Indicator of the French Business Climate," Documents de Travail de la DESE - Working Papers of the DESE g2009-02, Institut National de la Statistique et des Etudes Economiques, DESE.
    10. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    11. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    12. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    13. Michael D. Bordo & Thomas F. Helbling, 2011. "International Business Cycle Synchronization In Historical Perspective," Manchester School, University of Manchester, vol. 79(2), pages 208-238, March.
    14. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    15. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    16. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    17. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, pages 417-427.
    18. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    19. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro-area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    20. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    21. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    22. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    23. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    24. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    25. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    26. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    27. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-560, June.
    28. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    29. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, pages 42-49.
    30. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    31. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, pages 1024-1034.
    32. Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
    33. Matthieu Cornec, 2006. "Analyse factorielle dynamique multifréquence appliquée à la datation de la conjoncture française," Économie et Prévision, Programme National Persée, vol. 172(1), pages 29-43.
    34. Baumeister, Christiane & Liu, Philip & Mumtaz, Haroon, 2010. "Changes in the transmission of monetary policy: evidence from a time-varying factor-augmented VAR," Bank of England working papers 401, Bank of England.
    35. Maximo Camacho & Gabriel Perez Quiros, 2011. "Spain‐Sting: Spain Short‐Term Indicator Of Growth," Manchester School, University of Manchester, vol. 79(s1), pages 594-616, June.
    36. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    37. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    38. George Kapetanios & Gonzalo Camba-Mendez, 2005. "Forecasting euro area inflation using dynamic factor measures of underlying inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 491-503.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Guest Contribution: “Nowcasting Global GDP Growth”
      by Menzie Chinn in Econbrowser on 2015-03-12 09:56:18

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    2. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
    3. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP
      [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]
      ," MPRA Paper 63713, University Library of Munich, Germany.
    4. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," SFB 649 Discussion Papers SFB649DP2014-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Ferrara , L. & Marsilli, C., 2016. "Nowcasting global economic growth," Rue de la Banque, Banque de France, issue 23, April..
    6. L. Ferrara. & G. Sestieri., 2014. "US labour market and monetary policy: current debates and challenges," Quarterly selection of articles - Bulletin de la Banque de France, Banque de France, issue 36, pages 111-129, winter.
    7. Amélie Charles & Olivier Darné & Fabien Tripier, 2017. "Uncertainty and the Macroeconomy: Evidence from an uncertainty composite indicator ," Post-Print hal-01549625, HAL.
    8. repec:eee:eneeco:v:65:y:2017:i:c:p:411-423 is not listed on IDEAS
    9. Amélie Charles & Olivier Darné & Fabien Tripier, 2017. "Uncertainty and the Macroeconomy: Evidence from an uncertainty composite indicator ," Post-Print hal-01549625, HAL.

    More about this item

    Keywords

    Dynamic factor models; estimation; tests for the number of factors; macroeconomic applications;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E66 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General Outlook and Conditions
    • F44 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Business Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:stdkab:5jz417f7b7nv. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/oecddfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.