IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v34y2016i4p620-641.html
   My bibliography  Save this article

Estimation and Inference of FAVAR Models

Author

Listed:
  • Jushan Bai
  • Kunpeng Li
  • Lina Lu

Abstract

The factor-augmented vector autoregressive (FAVAR) model is now widely used in macroeconomics and finance. In this model, observable and unobservable factors jointly follow a vector autoregressive process, which further drives the comovement of a large number of observable variables. We study the identification restrictions for FAVAR models, and propose a likelihood-based two-step method to estimate the model. The estimation explicitly accounts for factors being partially observed. We then provide an inferential theory for the estimated factors, factor loadings, and the dynamic parameters in the VAR process. We show how and why the limiting distributions are different from the existing results. Supplementary materials for this article are available online.

Suggested Citation

  • Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
  • Handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:620-641
    DOI: 10.1080/07350015.2015.1111222
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1111222
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    2. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    3. Gonçalves, Sílvia & Perron, Benoit, 2014. "Bootstrapping factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Yohei Yamamoto, 2019. "Bootstrap inference for impulse response functions in factor‐augmented vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 247-267, March.
    7. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-384, March.
    8. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    9. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    10. Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2014. "Detecting big structural breaks in large factor models," Journal of Econometrics, Elsevier, vol. 180(1), pages 30-48.
    11. repec:hal:journl:peer-00844811 is not listed on IDEAS
    12. Tsai, Henghsiu & Tsay, Ruey S., 2010. "Constrained Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1593-1605.
    13. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    14. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    15. Shintani, Mototsugu & Guo, Zi-Yi, 2011. "Finite Sample Performance of Principal Components Estimators for Dynamic Factor Models: Asymptotic vs. Bootstrap Approximations," EconStor Preprints 167627, ZBW - Leibniz Information Centre for Economics.
    16. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," Review of Economic Studies, Oxford University Press, vol. 83(4), pages 1511-1543.
    17. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    18. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    19. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    20. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    21. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    22. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    23. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    24. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    25. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    26. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    27. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    28. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    29. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    30. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "The great moderation of the term structure of UK interest rates," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 856-871, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
    2. Simon Beyeler & Sylvia Kaufmann, 2016. "Factor augmented VAR revisited - A sparse dynamic factor model approach," Working Papers 16.08, Swiss National Bank, Study Center Gerzensee.
    3. Alexander Chudik & Kamiar Mohaddes & M. Hashem Pesaran, 2018. "Identifying Global and National Output and Fiscal Policy Shocks Using a GVAR," Globalization Institute Working Papers 351, Federal Reserve Bank of Dallas, revised 26 Dec 2018.
    4. Herrala, Risto & Orlandi, Fabrice, 2020. "Win-Win? Assessing the global impact of the Chinese economy," BOFIT Discussion Papers 4/2020, Bank of Finland, Institute for Economies in Transition.
    5. Maldonado, Javier & Ruiz Ortega, Esther, 2017. "Accurate Subsampling Intervals of Principal Components Factors," DES - Working Papers. Statistics and Econometrics. WS 23974, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Franz Ramsauer & Aleksey Min & Michael Lingauer, 2019. "Estimation of FAVAR Models for Incomplete Data with a Kalman Filter for Factors with Observable Components," Econometrics, MDPI, Open Access Journal, vol. 7(3), pages 1-43, July.
    7. YAMAMOTO, Yohei, 2018. "Identifying Factor-Augmented Vector Autoregression Models via Changes in Shock Variances," Discussion paper series HIAS-E-72, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    8. Herwartz, Helmut & Rohloff, Hannes, 2018. "Less bang for the buck? Assessing the role of inflation uncertainty for U.S. monetary policy transmission in a data rich environment," Center for European, Governance and Economic Development Research Discussion Papers 358, University of Goettingen, Department of Economics.
    9. Ashoka Mody & Milan Nedeljkovic, 2018. "Central Bank Policies and Financial Markets: Lessons from the Euro Crisis," CESifo Working Paper Series 7400, CESifo.
    10. Anindya Banerjee & Victor Bystrov & Paul Mizen, 2017. "Structural Factor Analysis of Interest Rate Pass Through In Four Large Euro Area Economies," Working Papers in Economics 17/07, University of Canterbury, Department of Economics and Finance.
    11. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    12. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    13. Ashoka Mody & Milan Nedeljkovic, 2018. "Central Bank Policies and Financial Markets: Lessons from the Euro Crisis," Working Papers 253, Princeton University, Department of Economics, Center for Economic Policy Studies..
    14. Jiahe Lin & George Michailidis, 2019. "Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models," Papers 1912.04146, arXiv.org, revised May 2020.
    15. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.
    16. Martin Hodula & Martin Macháček & Aleš Melecký, 2020. "Placing the Czech Shadow Banking Sector under the Light," Prague Economic Papers, University of Economics, Prague, vol. 2020(1), pages 3-28.
    17. Martin Hodula & Martin Macháček & Aleš Melecký, . "Placing the Czech Shadow Banking Sector under the Light," Prague Economic Papers, University of Economics, Prague, vol. 0, pages 1-25.

    More about this item

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:620-641. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UBES20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.