IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-134458.html
   My bibliography  Save this paper

Dynamic Factor Models with Infinite-Dimensional Factor Space: One-Sided Representations

Author

Listed:
  • Mario Forni
  • Marc Hallin
  • Marco Lippi
  • Paolo Zaffaroni

Abstract

Abstract. Factor model methods recently have become extremely popular in the theory andpractice of large panels of time series data. Those methods rely on various factor models whichall are particular cases of the Generalized Dynamic Factor Model (GDFM) introduced inForni, Hallin, Lippi and Reichlin (2000). That paper, however, relies on Brillinger's dynamicprincipal components. The corresponding estimators are two-sided filters whose performanceat the end of the observation period or for forecasting purposes is rather poor. No such problem arises with estimators based on standard principal components, which have beendominant in this literature. On the other hand, those estimators require the assumptionthat the space spanned by the factors has finite dimension. In the present paper, we arguethat such an assumption is extremely restrictive and potentially quite harmful. Elaboratingupon recent results by Anderson and Deistler (2008a, b) on singular stationary processes withrational spectrum, we obtain one-sided representations for the GDFM without assuming finitedimension of the factor space. Construction of the corresponding estimators is also brieflyoutlined. In a companion paper, we establish consistency and rates for such estimators, andprovide Monte Carlo results further motivating our approach.

Suggested Citation

  • Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2012. "Dynamic Factor Models with Infinite-Dimensional Factor Space: One-Sided Representations," Working Papers ECARES ECARES 2012-046, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/134458
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/134458/1/2012-046-FORNI_HALLIN_LIPPI_ZAFFARONI-dynamic.pdf
    File Function: 2012-046-FORNI_HALLIN_LIPPI_ZAFFARONI-dynamic
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Corielli, Francesco & Marcellino, Massimiliano, 2006. "Factor based index tracking," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2215-2233, August.
    2. Eickmeier, Sandra, 2007. "Business cycle transmission from the US to Germany--A structural factor approach," European Economic Review, Elsevier, vol. 51(3), pages 521-551, April.
    3. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-560, June.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    5. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters,in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
    6. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    7. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    8. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 285-310 National Bureau of Economic Research, Inc.
    9. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    10. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    11. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    12. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    13. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, pages 350-384.
    14. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    15. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    16. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
    17. Hallin, Marc & Mathias, Charles & Pirotte, Hugues & Veredas, David, 2011. "Market liquidity as dynamic factors," Journal of Econometrics, Elsevier, vol. 163(1), pages 42-50, July.
    18. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," EIEF Working Papers Series 1106, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2011.
    19. repec:ulb:ulbeco:2013/136188 is not listed on IDEAS
    20. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    21. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    22. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, pages 1024-1034.
    23. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    24. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    25. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    26. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    27. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    28. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-1323, September.
    29. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    30. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    31. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    32. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    33. Forni, Mario & Lippi, Marco, 2011. "The general dynamic factor model: One-sided representation results," Journal of Econometrics, Elsevier, vol. 163(1), pages 23-28, July.
    34. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    35. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    36. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    37. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, pages 1806-1813.
    38. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    39. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Hallin & Siegfried Hörmann & Marco Lippi, 2017. "Optimal Dimension Reduction for High-dimensional and Functional Time Series," Working Papers ECARES ECARES 2017-39, ULB -- Universite Libre de Bruxelles.
    2. Graziella Bertocchi & Andrea Guerzoni, 2010. "Growth, History, or Institutions? What Explains State Fragility in Sub-Saharan Africa," Department of Economics 0625, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    3. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor Model with Infinite Dimensional Factor Space: Forecasting," Working Papers ECARES ECARES 2016-16, ULB -- Universite Libre de Bruxelles.
    4. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    5. repec:eee:econom:v:201:y:2017:i:2:p:292-306 is not listed on IDEAS
    6. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    7. repec:eee:econom:v:201:y:2017:i:2:p:307-321 is not listed on IDEAS
    8. F. Della Marra, 2017. "A forecasting performance comparison of dynamic factor models based on static and dynamic methods," Economics Department Working Papers 2017-ME01, Department of Economics, Parma University (Italy).
    9. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    10. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    11. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    12. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    13. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
    14. Lübbers, Johannes & Posch, Peter N., 2016. "Commodities' common factor: An empirical assessment of the markets' drivers," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 28-40.

    More about this item

    Keywords

    generalized dynamic factor models; vector processes with singular spectral density; one-sided representations for dynamic models;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • E00 - Macroeconomics and Monetary Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/134458. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: http://edirc.repec.org/data/arulbbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.