IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach

  • Bork, Lasse

    ()

    (Department of Business Studies, Aarhus School of Business)

Economy-wide e¤ects of shocks to the US federal funds rate are estimated in a state space model with 120 US macroeconomic and financial time series driven by the dynamics of the federal funds rate and a few dynamic factors. This state space system is denoted a factor-augmented VAR (FAVAR) by Bernanke et al. (2005). I estimate the FAVAR by the fully parametric one-step EM algorithm as an alternative to the two-step principal component method and the one-step Bayesian method in Bernanke et al. (2005). The EM algorithm which is an iterative maximum likelihood method estimates all the parameters and the dynamic factors simultaneously and allows for classical inference. I demonstrate empirically that the same impulse responses but better fit emerge robustly from a low order FAVAR with eight correlated factors compared to a high order FAVAR with fewer correlated factors, for instance four factors. This empirical result accords with one of the theoretical results from Bai & Ng (2007) in which it is shown that the information in complicated factor dynamics may be substituted by panel information

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://research.asb.dk/fbspretrieve/5446/F_2009_03.pdf
Download Restriction: no

Paper provided by University of Aarhus, Aarhus School of Business, Department of Business Studies in its series Finance Research Group Working Papers with number F-2009-03.

as
in new window

Length: 68 pages
Date of creation: 01 Feb 2009
Date of revision:
Handle: RePEc:hhb:aarbfi:2009-03
Contact details of provider: Postal:
The Aarhus School of Business, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark

Fax: + 45 86 15 19 43
Web page: http://www.asb.dk/about/departments/bs.aspx

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  2. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  3. Lucrezia Reichlin & Mario Forni & Marc Hallin & Marco Lippi, 2001. "Coincident and leading indicators for the Euro area," ULB Institutional Repository 2013/10137, ULB -- Universite Libre de Bruxelles.
  4. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-304, September.
  5. Bańbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Large Bayesian VARs," Working Paper Series 0966, European Central Bank.
  6. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  7. Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
  8. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-87.
  9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  10. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  11. Bjørnland, Hilde C. & Leitemo, Kai, 2009. "Identifying the interdependence between US monetary policy and the stock market," Journal of Monetary Economics, Elsevier, vol. 56(2), pages 275-282, March.
  12. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
  13. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," Working Papers 284, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  14. Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Discussion Paper 1998-141, Tilburg University, Center for Economic Research.
  15. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
  16. Lasse BORK & Hans DEWACHTER & Romain HOUSSA, 2009. "Identification of macroeconomic factors in large panels," Working Papers Department of Economics ces09.18, KU Leuven, Faculty of Economics and Business, Department of Economics.
  17. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  18. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
  19. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  20. Wu, Lilian Shiao-Yen & Pai, Jeffrey S. & Hosking, J.R.M., 1996. "An algorithm for estimating parameters of state-space models," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 99-106, June.
  21. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
  22. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2004. "The generalised dynamic factor model: consistency and rates," ULB Institutional Repository 2013/10133, ULB -- Universite Libre de Bruxelles.
  23. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  24. Sydney C. Ludvigson & Serena Ng, 2005. "The Empirical Risk-Return Relation: A Factor Analysis Approach," NBER Working Papers 11477, National Bureau of Economic Research, Inc.
  25. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  26. Geweke, John F & Singleton, Kenneth J, 1981. "Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 37-54, February.
  27. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2007. "Opening the black box: structural factor models with large cross-sections," Working Paper Series 0712, European Central Bank.
  28. Carlo Ambrogio Favero & Massimilano Marcellino & Francesca Neglia, . "Principal components at work: The empirical analysis of monetary policy with large datasets," Working Papers 223, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  29. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
  30. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  31. Ricardo Reis & Mark W. Watson, 2010. "Relative Goods' Prices, Pure Inflation, and the Phillips Correlation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 128-57, July.
  32. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-87, April.
  33. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-57, July.
  34. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhb:aarbfi:2009-03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helle Vinbaek Stenholt)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.