IDEAS home Printed from https://ideas.repec.org/p/hhb/aarbfi/2009-03.html
   My bibliography  Save this paper

Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach

Author

Listed:
  • Bork, Lasse

    () (Department of Business Studies, Aarhus School of Business)

Abstract

Economy-wide e¤ects of shocks to the US federal funds rate are estimated in a state space model with 120 US macroeconomic and financial time series driven by the dynamics of the federal funds rate and a few dynamic factors. This state space system is denoted a factor-augmented VAR (FAVAR) by Bernanke et al. (2005). I estimate the FAVAR by the fully parametric one-step EM algorithm as an alternative to the two-step principal component method and the one-step Bayesian method in Bernanke et al. (2005). The EM algorithm which is an iterative maximum likelihood method estimates all the parameters and the dynamic factors simultaneously and allows for classical inference. I demonstrate empirically that the same impulse responses but better fit emerge robustly from a low order FAVAR with eight correlated factors compared to a high order FAVAR with fewer correlated factors, for instance four factors. This empirical result accords with one of the theoretical results from Bai & Ng (2007) in which it is shown that the information in complicated factor dynamics may be substituted by panel information

Suggested Citation

  • Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  • Handle: RePEc:hhb:aarbfi:2009-03
    as

    Download full text from publisher

    File URL: http://research.asb.dk/fbspretrieve/5446/F_2009_03.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters,in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Wu, Lilian Shiao-Yen & Pai, Jeffrey S. & Hosking, J.R.M., 1996. "An algorithm for estimating parameters of state-space models," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 99-106, June.
    4. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    5. Bjørnland, Hilde C. & Leitemo, Kai, 2009. "Identifying the interdependence between US monetary policy and the stock market," Journal of Monetary Economics, Elsevier, vol. 56(2), pages 275-282, March.
    6. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Romain Houssa & Lasse Bork & Hans Dewachter, 2008. "Identification of Macroeconomic Factors in Large Panels," Working Papers 1010, University of Namur, Department of Economics.
    10. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    11. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 27-42, March.
    12. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    13. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    14. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    15. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    16. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    17. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    18. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    19. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
    20. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
    21. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    22. Ricardo Reis & Mark W. Watson, 2010. "Relative Goods' Prices, Pure Inflation, and the Phillips Correlation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 128-157, July.
    23. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    24. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    25. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    26. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    27. Geweke, John F & Singleton, Kenneth J, 1981. "Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 37-54, February.
    28. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    29. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    30. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    31. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    32. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    33. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    34. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    35. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    36. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romain Houssa & Lasse Bork & Hans Dewachter, 2008. "Identification of Macroeconomic Factors in Large Panels," Working Papers 1010, University of Namur, Department of Economics.
    2. Antonello D’Agostino & Michele Modugno & Chiara Osbat, 2017. "A Global Trade Model for the Euro Area," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 1-34, December.
    3. Andrés Felipe Londoño & Jorge Andrés Tamayo & Carlos Alberto Velásquez, 2012. "Dinámica de la política monetaria e inflación objetivo en Colombia: una aproximación FAVAR," Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(68), pages 14-71, Junio.
    4. repec:gam:jecnmx:v:5:y:2017:i:2:p:20-:d:98854 is not listed on IDEAS
    5. repec:spr:empeco:v:53:y:2017:i:1:d:10.1007_s00181-017-1254-1 is not listed on IDEAS
    6. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    7. Tony Chernis & Rodrigo Sekkel, 2017. "A dynamic factor model for nowcasting Canadian GDP growth," Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
    8. André Binette & Tony Chernis, Daniel de Munnik & Daniel de Munnik, 2017. "Global Real Activity for Canadian Exports: GRACE," Discussion Papers 17-2, Bank of Canada.
    9. Hacioglu, Sinem & Tuzcuoglu, Kerem, 2016. "Interpreting the latent dynamic factors by threshold FAVAR model," Bank of England working papers 622, Bank of England.

    More about this item

    Keywords

    monetary policy; large cross-sections; factor-augmented vector autoregression; EM algorithm; state space;

    JEL classification:

    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhb:aarbfi:2009-03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helle Vinbaek Stenholt). General contact details of provider: http://edirc.repec.org/data/ifhhadk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.