IDEAS home Printed from https://ideas.repec.org/p/ete/ceswps/ces09.18.html

Identification of macroeconomic factors in large panels

Author

Listed:
  • Lasse BORK
  • Hans DEWACHTER
  • Romain HOUSSA

Abstract

This paper presents a dynamic factor model in which the extracted factors and shocks are given a clear economic interpretation. The economic interpretation of the factors is obtained by means of a set of over-identifying loading restrictions, while the structural shocks are estimated following standard practices in the SVAR literature. Estimators based on the EM algorithm are developped. We apply this framework to a large panel of US monthly macroeconomic series. In particular, we identify nine macroeconomic factors and discuss the economic impact of monetary policy stocks. The results are theoretically plausible and in line with other findings in the literature. The first part of this paper uses quantitative methods to assess the success of party affiliation, personal interests and the economic profile of the constituencies in predicting voting behavior. Thanks to the detailed censuses of 1846 on agriculture, industry and population, it is possible to typify the economic make-up of the electoral districts in much more detail than in the British case. However, the analysis of roll-call voting proves that party affiliation and personal and constituency economic interests are insufficient to explain the shift towards free trade. The second part of the paper then discusses the role played by political strategy and ideas in the liberalization of corn tariffs, using a qualitative analysis of the debates on tariff policy. The large number of votes over a forty year period allows us to document the relationship between ideas and interests in a new way.

Suggested Citation

  • Lasse BORK & Hans DEWACHTER & Romain HOUSSA, 2009. "Identification of macroeconomic factors in large panels," Working Papers of Department of Economics, Leuven ces09.18, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
  • Handle: RePEc:ete:ceswps:ces09.18
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/bitstream/123456789/251011/1/DPS0918.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Bajraj, Gent & Lorca, Jorge & Wlasiuk, Juan M., 2023. "On foreign drivers of emerging markets fluctuations," Economic Modelling, Elsevier, vol. 129(C).
    3. Fulvio Pegoraro & Siegel, A. F. & Luca Tiozzo Pezzoli, 2014. "Specification Analysis of International Treasury Yield Curve Factors," Working papers 490, Banque de France.
    4. Lasse Bork, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," CREATES Research Papers 2009-11, Department of Economics and Business Economics, Aarhus University.
    5. Tony Chernis & Rodrigo Sekkel, 2017. "A dynamic factor model for nowcasting Canadian GDP growth," Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
    6. Antonello D’Agostino & Michele Modugno & Chiara Osbat, 2017. "A Global Trade Model for the Euro Area," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 1-34, December.
    7. Fornero, Jorge & Kirchner, Markus & Molina, Carlos, 2024. "Estimating shadow policy rates in a small open economy and the role of foreign factors," Journal of International Money and Finance, Elsevier, vol. 140(C).
    8. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    9. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    10. Franz Ramsauer & Aleksey Min & Michael Lingauer, 2019. "Estimation of FAVAR Models for Incomplete Data with a Kalman Filter for Factors with Observable Components," Econometrics, MDPI, vol. 7(3), pages 1-43, July.
    11. Piyachart Phiromswad & Takeshi Yagihashi, 2016. "Empirical identification of factor models," Empirical Economics, Springer, vol. 51(2), pages 621-658, September.
    12. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
    13. Riccardo (Jack) Lucchetti & Ioannis A. Venetis, 2019. "Dynamic Factor Models in gretl. The DFM package," gretl working papers 7, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    14. Monica Defend & Aleksey Min & Lorenzo Portelli & Franz Ramsauer & Francesco Sandrini & Rudi Zagst, 2021. "Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data," Forecasting, MDPI, vol. 3(1), pages 1-35, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:ceswps:ces09.18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/Economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.