IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Dimensions of macroeconomic uncertainty: A common factor analysis

  • Steffen Henzel


  • Malte Rengel

In the current literature uncertainty about the future course of the economy is identified as a possible driver of business cycle fluctuations. In fact, uncertainty surrounds the movements of all economic variables which gives rise to a monitoring problem. We identify the different dimensions of uncertainty in the macroeconomy. To this end, weconstruct a large dataset covering all forms of economic uncertainty and unravel the fundamental factors that account for the common dynamics therein. These common factors are interpreted as macroeconomic uncertainty. Our results show that the first factor captures business cycle uncertainty while the second factor is identified as oil and commodity price uncertainty. Finally, we demonstrate that a distinction between both types of macroeconomic uncertainty is essential since they have rather different implications for economic activity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Ifo Institute for Economic Research at the University of Munich in its series Ifo Working Paper Series with number Ifo Working Paper No. 167.

in new window

Date of creation: 2013
Date of revision:
Handle: RePEc:ces:ifowps:_167
Contact details of provider: Postal: Poschingerstrasse 5, 81679 Munich
Phone: +49 (89) 9224-0
Fax: +49 (89) 985369
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
  2. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Juan F. Rubio-Ramírez, 2010. "Fortune or Virtue: Time-Variant Volatilities Versus Parameter Drifting in U.S. Data," PIER Working Paper Archive 10-015, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  3. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2005. "Monetary Policy in Real Time," CEPR Discussion Papers 4981, C.E.P.R. Discussion Papers.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  4. Mario Forni & Domenico Giannone & Marco Lippi & Lucrezia Reichlin, 2008. "Opening the Black Box: Structural Factor Models with Large Cross-Sections," Working Papers ECARES 2008_036, ULB -- Universite Libre de Bruxelles.
  5. Sílvia Gonçalves & Lutz Kilian, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," CIRANO Working Papers 2003s-17, CIRANO.
  6. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, 05.
  7. Ben Bernanke & Jean Boivin & Piotr S. Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, MIT Press, vol. 120(1), pages 387-422, January.
  8. Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
  9. Nicholas Bloom & Max Floetotto & Nir Jaimovich & Itay Saporta-Eksten & Stephen J. Terry, 2014. "Really Uncertain Business Cycles," Working Papers 14-18, Center for Economic Studies, U.S. Census Bureau.
  10. Susanto Basu & Brent Bundick, 2012. "Uncertainty Shocks in a Model of Effective Demand," NBER Working Papers 18420, National Bureau of Economic Research, Inc.
  11. Jon Cohen & Michelle Alexopoulos, 2009. "Uncertain Times, Uncertain Measures," 2009 Meeting Papers 1211, Society for Economic Dynamics.
  12. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
  13. Benjamin Born & Johannes Pfeifer, 2011. "Policy Risk and the Business Cycle," Bonn Econ Discussion Papers bgse06_2011, University of Bonn, Germany.
  14. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  15. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, 01.
  16. Stefan Lundbergh & Timo Teräsvirta, 1999. "Evaluating GARCH Models," Tinbergen Institute Discussion Papers 99-008/4, Tinbergen Institute.
  17. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  18. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, July.
  19. Ruediger Bachmann & Steffen Elstner & Eric R. Sims, 2010. "Uncertainty and Economic Activity: Evidence from Business Survey Data," NBER Working Papers 16143, National Bureau of Economic Research, Inc.
  20. Nicholas Bloom, 2007. "The Impact of Uncertainty Shocks," NBER Working Papers 13385, National Bureau of Economic Research, Inc.
  21. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
  22. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
  23. Mario Forni & Lucrezia Reichlin, 1998. "Let's get real: a factor analytical approach to disaggregated business cycle dynamics," ULB Institutional Repository 2013/10147, ULB -- Universite Libre de Bruxelles.
  24. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  25. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  26. Bachmann, Rüdiger & Bayer, Christian, 2013. "‘Wait-and-See’ business cycles?," Journal of Monetary Economics, Elsevier, vol. 60(6), pages 704-719.
  27. Bekaert, Geert & Hoerova, Marie & Lo Duca, Marco, 2013. "Risk, uncertainty and monetary policy," Journal of Monetary Economics, Elsevier, vol. 60(7), pages 771-788.
  28. Jesús Fernández-Villaverde & Juan Rubio-Ramírez, 2010. "Macroeconomics and Volatility: Data, Models, and Estimation," NBER Working Papers 16618, National Bureau of Economic Research, Inc.
  29. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
  30. Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
  31. David N. DeJong & Hariharan Dharmarajan & Roman Liesenfeld & Guilherme Moura & Jean-Francois Richard, 2009. "Efficient Likelihood Evaluation of State-Space Representations," Working Papers 2009/15, Czech National Bank, Research Department.
  32. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, 05.
  33. Rüdiger Bachmann & Christian Bayer, 2011. "Uncertainty Business Cycles - Really?," NBER Working Papers 16862, National Bureau of Economic Research, Inc.
  34. Vladimir Yankov & Egon Zakrajsek & Simon Gilchrist, 2009. "Credit Market Shocks and Economic Fluctuations: Evidence from Corporate Bond and Stock Markets," 2009 Meeting Papers 514, Society for Economic Dynamics.
  35. Laurence Ball, 1990. "Why Does High Inflation Raise Inflation Uncertainty?," NBER Working Papers 3224, National Bureau of Economic Research, Inc.
  36. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
  37. Ramey, Garey & Ramey, Valerie A, 1995. "Cross-Country Evidence on the Link between Volatility and Growth," American Economic Review, American Economic Association, vol. 85(5), pages 1138-51, December.
  38. Kevin B. Grier & Mark J. Perry, 2000. "The effects of real and nominal uncertainty on inflation and output growth: some garch-m evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 45-58.
  39. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  40. Apostolos Serletis, 2012. "Oil Price Uncertainty," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8407.
  41. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  42. Edward S. Knotek II & Shujaat Khan, 2011. "How do households respond to uncertainty shocks?," Economic Review, Federal Reserve Bank of Kansas City, issue Q II.
  43. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
  44. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, 08.
  45. Ruediger Bachmann & Giuseppe Moscarini, 2011. "Business Cycles and Endogenous Uncertainty," 2011 Meeting Papers 36, Society for Economic Dynamics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ces:ifowps:_167. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julio Saavedra)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.