IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/0996.html
   My bibliography  Save this paper

Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets

Author

Listed:
  • Gary Chamberlain
  • Michael Rothschild

Abstract

We examine the implications of arbitrage in a market with many assets. The absence of arbitrage opportunities implies that the linear functionals that give the mean and cost of a portfolio are continuous; hence there exist unique portfolios that represent these functionals. These portfolios span the mean-variance efficient set. We resolve the question of when a market with many assets permits so much diversification that risk-free investment opportunities are available. Ross 112, 141 showed that if there is a factor structure, then the mean returns are approximately linear functions of factor loadings. We define an approximate factor structure and show that this weaker restriction is sufficient for Ross' result. If the covariance matrix of the asset returns has only K unbounded eigenvalues, then there is an approximate factor structure and it is unique. The corresponding K eigenvectors converge and play the role of factor loadings. Hence only a principal component analysis is needed in empirical work.

Suggested Citation

  • Gary Chamberlain & Michael Rothschild, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," NBER Working Papers 0996, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:0996
    Note: ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w0996.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:0996. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.