IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v10y2003i5p603-621.html
   My bibliography  Save this article

Improved estimation of the covariance matrix of stock returns with an application to portfolio selection

Author

Listed:
  • Ledoit, Olivier
  • Wolf, Michael

Abstract

This paper proposes to estimate the covariance matrix of stock returns by an optimally weighted average of two existing estimators. The sample covariance matrix and single-index covariance matrix. This method is generally known as shrinkage, and it is standard in decision theory and in empirical Bayesian statistics. Our shrinkage estimator can be seen as a way to account for extra-market covariance without having to specify an arbitrary multi-factor structure. For NYSE and AMEX stock returns from 1972 to 1995, it can be used to select portfolios with significantly lower out-of-sample variance than a set of existing estimators, including multifactor models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
  • Handle: RePEc:eee:empfin:v:10:y:2003:i:5:p:603-621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(03)00007-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    3. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    6. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    7. Roll, Richard, 1977. "A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory," Journal of Financial Economics, Elsevier, vol. 4(2), pages 129-176, March.
    8. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    9. Roll, Richard & Ross, Stephen A, 1980. "An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    10. Elton, Edwin J & Gruber, Martin J, 1973. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Journal of Finance, American Finance Association, vol. 28(5), pages 1203-1232, December.
    11. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    12. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    13. Kandel, Shmuel & Stambaugh, Robert F, 1995. "Portfolio Inefficiency and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 157-184, March.
    14. Rosenberg, Barr, 1974. "Extra-Market Components of Covariance in Security Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(2), pages 263-274, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon Poynter & James Winder & Tzu Tai, 2015. "An analysis of co-movements in industrial sector indices over the last 30 years," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 69-88, January.
    2. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    3. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    4. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    5. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    6. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    7. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    8. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    9. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    10. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    11. Don U.A. Galagedera, 2004. "A survey on risk-return analysis," Finance 0406010, University Library of Munich, Germany.
    12. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    13. Guerard, John B. & Markowitz, Harry & Xu, GanLin, 2015. "Earnings forecasting in a global stock selection model and efficient portfolio construction and management," International Journal of Forecasting, Elsevier, vol. 31(2), pages 550-560.
    14. Sainan Jin & Liangjun Su & Yonghui Zhang, 2015. "Nonparametric testing for anomaly effects in empirical asset pricing models," Empirical Economics, Springer, vol. 48(1), pages 9-36, February.
    15. Ferreira, Eva & Gil-Bazo, Javier & Orbe, Susan, 2011. "Conditional beta pricing models: A nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3362-3382.
    16. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    17. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    18. Lekkos, Ilias, 2001. "Factor models and the correlation structure of interest rates: Some evidence for USD, GBP, DEM and JPY," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1427-1445, August.
    19. Louis K. C. Chan & Jason Karceski & Josef Lakonishok, 1997. "The Risk and Return from Factors," NBER Working Papers 6098, National Bureau of Economic Research, Inc.
    20. Trabelsi, Mohamed Ali, 2010. "Choix de portefeuille: comparaison des différentes stratégies [Portfolio selection: comparison of different strategies]," MPRA Paper 82946, University Library of Munich, Germany, revised 01 Dec 2010.
    21. Shahzad, Syed Jawad Hussain & Zakaria, Muhammad & Raza, Naveed, 2014. "Sensitivity Analysis of CAPM Estimates: Data Frequency and Time Frame," MPRA Paper 60110, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:10:y:2003:i:5:p:603-621. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.