IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

DSGE Models in a Data-Rich Environment

Listed author(s):
  • Boivin, J.
  • Giannoni, M.

Standard practice for the estimation of dynamic stochastic general equilibrium (DSGE) models maintains the assumption that economic variables are properly measured by a single indicator, and that all relevant information for the estimation is summarized by a small number of data series. However, recent empirical research on factor models has shown that information contained in large data sets is relevant for the evolution of important macroeconomic series. This suggests that conventional model estimates and inference based on estimated DSGE models might be distorted. In this paper, we propose an empirical framework for the estimation of DSGE models that exploits the relevant information from a data-rich environment. This framework provides an interpretation of all information contained in a large data set, and in particular of the latent factors, through the lenses of a DSGE model. The estimation involves Markov-Chain Monte-Carlo (MCMC) methods. We apply this estimation approach to a state-of-the-art DSGE monetary model. We find evidence of imperfect measurement of the model's theoretical concepts, in particular for inflation. We show that exploiting more information is important for accurate estimation of the model's concepts and shocks, and that it implies different conclusions about key structural parameters and the sources of economic fluctuations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_162_2007.pdf
Download Restriction: no

Paper provided by Banque de France in its series Working papers with number 162.

as
in new window

Length: 63 pages
Date of creation: 2007
Handle: RePEc:bfr:banfra:162
Contact details of provider: Postal:
Banque de France 31 Rue Croix des Petits Champs LABOLOG - 49-1404 75049 PARIS

Web page: http://www.banque-france.fr/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Alejandro Justiniano & Northwestern University, 2006. "The Time Varying Volatility of Macroeconomic Fluctuations," Computing in Economics and Finance 2006 219, Society for Computational Economics.
  2. Noah Williams & Andrew Levin & Alexei Onatski, 2005. "Monetary Policy under Uncertainty in Micro-Founded Macroeconometric Models," Computing in Economics and Finance 2005 478, Society for Computational Economics.
  3. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  4. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Proceedings, Federal Reserve Bank of San Francisco, issue Jun, pages -.
  5. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
  6. Altug, Sumru, 1989. "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(4), pages 889-920, November.
  7. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
  8. Lawrence J. Christiano & Martin Eichenbaum, 1990. "Current real business cycle theories and aggregate labor market fluctuations," Discussion Paper / Institute for Empirical Macroeconomics 24, Federal Reserve Bank of Minneapolis.
  9. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2005. "On the Fit and Forecasting Performance of New Keynesian Models," CEPR Discussion Papers 4848, C.E.P.R. Discussion Papers.
  10. Marc Giannoni & Michael Woodford, 2004. "Optimal Inflation-Targeting Rules," NBER Chapters, in: The Inflation-Targeting Debate, pages 93-172 National Bureau of Economic Research, Inc.
  11. Peter Ireland, 1999. "A Method for Taking Models to the Data," Computing in Economics and Finance 1999 1233, Society for Computational Economics.
  12. Jesús Fernández-Villaverde & Juan Francisco Rubio-Ramírez, 2004. "Estimating nonlinear dynamic equilibrium economies: a likelihood approach," FRB Atlanta Working Paper 2004-1, Federal Reserve Bank of Atlanta.
  13. Ruge-Murcia, Francisco J., 2002. "Methods to Estimate Dynamic Stochastic General Equilibrium Models," University of California at San Diego, Economics Working Paper Series qt4fc8x822, Department of Economics, UC San Diego.
  14. Ellen R. McGrattan, 1991. "The macroeconomic effects of distortionary taxation," Discussion Paper / Institute for Empirical Macroeconomics 37, Federal Reserve Bank of Minneapolis.
  15. Chris Otrok, 1999. "On Measuring the Welfare Cost of Business Cycles," Virginia Economics Online Papers 318, University of Virginia, Department of Economics.
  16. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
  17. Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 0722, European Central Bank.
  18. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  19. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139, December.
  20. Svensson, Lars E. O. & Woodford, Michael, 2003. "Indicator variables for optimal policy," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 691-720, April.
  21. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2005. "Monetary Policy in Real Time," CEPR Discussion Papers 4981, C.E.P.R. Discussion Papers.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  22. Christiano, Lawrence J., 1988. "Why does inventory investment fluctuate so much?," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 247-280.
  23. Jonas Fisher, 2004. "Technology Shocks Matter," Econometric Society 2004 North American Winter Meetings 14, Econometric Society.
  24. Lars Peter Hansen & Ellen R. McGrattan & Thomas J. Sargent, 1994. "Mechanics of forming and estimating dynamic linear economies," Staff Report 182, Federal Reserve Bank of Minneapolis.
  25. Ellen R. McGrattan & Richard Rogerson & Randall Wright, 1995. "An equilibrium model of the business cycle with household production and fiscal policy," Staff Report 191, Federal Reserve Bank of Minneapolis.
  26. Edward C. Prescott, 1986. "Theory ahead of business cycle measurement," Staff Report 102, Federal Reserve Bank of Minneapolis.
  27. Amato, Jeffery D. & Laubach, Thomas, 2003. "Estimation and control of an optimization-based model with sticky prices and wages," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1181-1215, May.
  28. Pearlman, Joseph & Currie, David & Levine, Paul, 1986. "Rational expectations models with partial information," Economic Modelling, Elsevier, vol. 3(2), pages 90-105, April.
  29. Rochelle M. Edge & Thomas Laubach & John C. Williams, 2003. "The responses of wages and prices to technology shocks," Finance and Economics Discussion Series 2003-65, Board of Governors of the Federal Reserve System (U.S.).
  30. Ireland, Peter N., 1997. "A small, structural, quarterly model for monetary policy evaluation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 83-108, December.
  31. Juillard, Michel & Karam, Philippe & Laxton, Douglas & Pesenti, Paolo, 2006. "Welfare-based monetary policy rules in an estimated DSGE model of the US economy," Working Paper Series 0613, European Central Bank.
  32. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
  33. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
  34. Marc Giannoni & Michael Woodford, 2003. "How forward-looking is optimal monetary policy?," Proceedings, Federal Reserve Bank of Cleveland, pages 1425-1483.
  35. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
  36. Smets, Frank & Wouters, Raf, 2002. "An estimated stochastic dynamic general equilibrium model of the euro area," Working Paper Series 0171, European Central Bank.
  37. Alexei Onatski & Noah Williams, 2010. "Empirical and policy performance of a forward-looking monetary model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 145-176.
  38. Richard Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," NBER Working Papers 6442, National Bureau of Economic Research, Inc.
  39. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
  40. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
  41. Peter N. Ireland, 1999. "Sticky-Price Models of the Business Cycle: Specification and Stability," Boston College Working Papers in Economics 426, Boston College Department of Economics.
  42. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  43. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
  44. McCallum, Bennett T., 1998. "Solutions to linear rational expectations models: a compact exposition," Economics Letters, Elsevier, vol. 61(2), pages 143-147, November.
  45. Jean Boivin & Marc P. Giannoni, 2003. "Has Monetary Policy Become More Effective?," NBER Working Papers 9459, National Bureau of Economic Research, Inc.
  46. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
  47. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
  48. Ingram, B.F. & Kocherlakota, N.R. & Savin, N.E., 1992. "Explaining Business Cycles : A Multiple Shock Approach," Working Papers 92-09, University of Iowa, Department of Economics.
  49. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  50. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
  51. Forni, Mario & Lippi, Marco & Reichlin, Lucrezia, 2003. "Opening the Black Box: Structural Factor Models versus Structural VARs," CEPR Discussion Papers 4133, C.E.P.R. Discussion Papers.
  52. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
  53. Julio Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361 National Bureau of Economic Research, Inc.
  54. Ben S. Bernanke & Ilian Mihov, 1995. "Measuring monetary policy," Working Papers in Applied Economic Theory 95-09, Federal Reserve Bank of San Francisco.
  55. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Villani, Mattias, 2005. "Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through," Working Paper Series 179, Sveriges Riksbank (Central Bank of Sweden).
  56. Hall, George J., 1996. "Overtime, effort, and the propagation of business cycle shocks," Journal of Monetary Economics, Elsevier, vol. 38(1), pages 139-160, August.
  57. King, Robert G & Watson, Mark W, 1998. "The Solution of Singular Linear Difference Systems under Rational Expectations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1015-1026, November.
  58. Jerry Hausman & Ephraim Leibtag, 2009. "CPI Bias from Supercenters: Does the BLS Know that Wal-Mart Exists?," NBER Chapters, in: Price Index Concepts and Measurement, pages 203-231 National Bureau of Economic Research, Inc.
  59. Bencivenga, Valerie R, 1992. "An Econometric Study of Hours and Output Variation with Preference Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(2), pages 449-471, May.
  60. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388.
  61. Mark Bils, 2004. "Measuring the Growth from Better and Better Goods," NBER Working Papers 10606, National Bureau of Economic Research, Inc.
  62. Kim, Jinill, 2000. "Constructing and estimating a realistic optimizing model of monetary policy," Journal of Monetary Economics, Elsevier, vol. 45(2), pages 329-359, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:162. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael brassart)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.