IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models

  • Bekiros, Stelios D.
  • Paccagnini, Alessia

Advanced Bayesian methods are employed in estimating dynamic stochastic general equilibrium (DSGE) models. Although policymakers and practitioners are particularly interested in DSGE models, these are typically too stylized to be taken directly to the data and often yield weak prediction results. Hybrid models can deal with some of the DSGE model misspecifications. Major advances in Bayesian estimation methodology could allow these models to outperform well-known time series models and effectively deal with more complex real-world problems as richer sources of data become available. A comparative evaluation of the out-of-sample predictive performance of many different specifications of estimated DSGE models and various classes of VAR models is performed, using datasets from the US economy. Simple and hybrid DSGE models are implemented, such as DSGE–VAR and Factor Augmented DSGEs and tested against standard, Bayesian and Factor Augmented VARs. Moreover, small scale models including the real gross domestic product, the harmonized consumer price index and the nominal short-term federal funds interest rate, are comparatively assessed against medium scale models featuring additionally sticky nominal prices, wage contracts, habit formation, variable capital utilization and investment adjustment costs. The investigated period spans 1960:Q4–2010:Q4 and forecasts are produced for the out-of-sample testing period 1997:Q1–2010:Q4. This comparative validation can be useful to monetary policy analysis and macro-forecasting with the use of advanced Bayesian methods.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003423
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 71 (2014)
Issue (Month): C ()
Pages: 298-323

as
in new window

Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:298-323
DOI: 10.1016/j.csda.2013.09.018
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christoffel, Kai & Coenen, Günter & Warne, Anders, 2008. "The New Area-Wide Model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 0944, European Central Bank.
  2. Altug, Sumru, 1989. "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(4), pages 889-920, November.
  3. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
  4. Mario Forni & Lucrezia Reichlin, 1996. "Dynamic common factors in large cross-sections," ULB Institutional Repository 2013/10149, ULB -- Universite Libre de Bruxelles.
  5. Alexander Chudik & M. Hashem Pesaran, 2007. "Infinite Dimensional VARs and Factor Models," CESifo Working Paper Series 2176, CESifo Group Munich.
  6. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
  7. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, Elsevier.
  8. McGrattan, Ellen R., 1994. "The macroeconomic effects of distortionary taxation," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 573-601, June.
  9. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
  10. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  11. Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
  12. Jouchi Nakajima & Munehisa Kasuya & Toshiaki Watanabe, 2009. "Bayesian Analysis of Time-Varying Parameter Vector Autoregressive Model for the Japanese Economy and Monetary Policy," IMES Discussion Paper Series 09-E-13, Institute for Monetary and Economic Studies, Bank of Japan.
  13. Julio Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361 National Bureau of Economic Research, Inc.
  14. Kim, Jinill, 2000. "Constructing and estimating a realistic optimizing model of monetary policy," Journal of Monetary Economics, Elsevier, vol. 45(2), pages 329-359, April.
  15. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
  16. Adolfson, Malin & Andersson, Michael K. & Lindé, Jesper & Villani, Mattias & Vredin, Anders, 2005. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," Working Paper Series 188, Sveriges Riksbank (Central Bank of Sweden), revised 01 Jun 2006.
  17. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  18. Edward Herbst & Frank Schorfheide, 2012. "Evaluating DSGE model forecasts of comovements," Finance and Economics Discussion Series 2012-11, Board of Governors of the Federal Reserve System (U.S.).
  19. Fiorentini, G. & Planas, C. & Rossi, A., 2012. "The marginal likelihood of dynamic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2650-2662.
  20. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
  21. Gonzalo Fernandez-de-Córdoba & José L. Torres, 2009. "Forecasting the Spanish economy with an Augmented VAR-DSGE model," Working Papers 2009-1, Universidad de Málaga, Department of Economic Theory, Málaga Economic Theory Research Center.
  22. Jean Boivin & Marc Giannoni, 2006. "DSGE Models in a Data-Rich Environment," NBER Working Papers 12772, National Bureau of Economic Research, Inc.
  23. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  24. Frank Smets & Raf Wouters, 2004. "Forecasting with a Bayesian DSGE Model: An Application to the Euro Area," Journal of Common Market Studies, Wiley Blackwell, vol. 42(4), pages 841-867, November.
  25. Frank Smets & Raf Wouters, 2002. "An estimated dynamic stochastic general equilibrium model of the euro area," Working Paper Research 35, National Bank of Belgium.
  26. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Villani, Mattias, 2007. "Evaluating An Estimated New Keynesian Small Open Economy Model," CEPR Discussion Papers 6027, C.E.P.R. Discussion Papers.
  27. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  28. Clarida, R. & Gali, J. & Gertler, M., 1998. "Monetary Policy Rules and Macroeconomic Stability: Evidence and some Theory," Working Papers 98-01, C.V. Starr Center for Applied Economics, New York University.
  29. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  30. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  31. Boivin, Jean & Giannoni, Marc P. & Mihov, Ilian, 2006. "Sticky prices and monetary policy: Evidence from disaggregated US data," CFS Working Paper Series 2007/14, Center for Financial Studies (CFS).
  32. Domenico Giannone & Martha Banbura & Lucrezia Reichlin, 2008. "Bayesian VARs with large panels," ULB Institutional Repository 2013/13388, ULB -- Universite Libre de Bruxelles.
  33. Lawrence J. Christiano & Martin Eichenbaum, 1990. "Current real business cycle theories and aggregate labor market fluctuations," Discussion Paper / Institute for Empirical Macroeconomics 24, Federal Reserve Bank of Minneapolis.
  34. Spencer, David E., 1993. "Developing a Bayesian vector autoregression forecasting model," International Journal of Forecasting, Elsevier, vol. 9(3), pages 407-421, November.
  35. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
  36. Eric M. Leeper & Christopher A. Sims, 1994. "Toward a modern macroeconomic model usable for policy analysis," FRB Atlanta Working Paper 94-5, Federal Reserve Bank of Atlanta.
  37. Peter N. Ireland, 1999. "A method for taking models to the data," Working Paper 9903, Federal Reserve Bank of Cleveland.
  38. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
  39. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
  40. Ralf Brueggemann & Helmut Luetkepohl & Massimiliano Marcellino, 2006. "Forecasting Euro-Area Variables with German Pre-EMU Data," Economics Working Papers ECO2006/30, European University Institute.
  41. Thomas Lubik & Frank Schorfheide, 2002. "Testing for Indeterminacy:An Application to U.S. Monetary Policy," Economics Working Paper Archive 480, The Johns Hopkins University,Department of Economics, revised Jun 2003.
  42. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-52, September.
  43. Agostino Consolo & Carlo A. Favero & Alessia Paccagnini, 2007. "On the Statistical Identification of DSGE Models," Working Papers 324, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  44. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
  45. Robert G. King, 2000. "The new IS-LM model : language, logic, and limits," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 45-103.
  46. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
  47. Canova, Fabio, 1994. "Statistical Inference in Calibrated Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(S), pages S123-44, Suppl. De.
  48. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  49. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
  50. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  51. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
  52. John F. Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
  53. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-87, April.
  54. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
  55. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-70, November.
  56. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
  57. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
  58. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  59. DeJong, David N & Ingram, Beth Fisher & Whiteman, Charles H, 1996. "A Bayesian Approach to Calibration," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 1-9, January.
  60. Marco Del Negro & Frank Schorfheide, 2006. "How good is what you've got? DSGE-VAR as a toolkit for evaluating DSGE models," Economic Review, Federal Reserve Bank of Atlanta, issue Q 2, pages 21-37.
  61. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
  62. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2000. "Reference Cycles: The NBER Methodology Revisited," CEPR Discussion Papers 2400, C.E.P.R. Discussion Papers.
  63. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:298-323. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.