IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bayesian Analysis of Time-Varying Parameter Vector Autoregressive Model for the Japanese Economy and Monetary Policy

  • Jouchi Nakajima
  • Munehisa Kasuya
  • Toshiaki Watanabe

This paper analyzes the time-varying parameter vector autoregressive (TVP-VAR) model for the Japanese economy and monetary policy. The time-varying parameters are estimated via the Markov chain Monte Carlo method and the posterior estimates of parameters reveal the time-varying structure of the Japanese economy and monetary policy during the period from 1981 to 2008. The marginal likelihoods of the TVP-VAR model and other VAR models are also estimated. The estimated marginal likelihoods indicate that the TVP-VAR model best fits the Japanese economic data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd09-072.pdf
Download Restriction: no

Paper provided by Institute of Economic Research, Hitotsubashi University in its series Global COE Hi-Stat Discussion Paper Series with number gd09-072.

as
in new window

Length:
Date of creation: May 2009
Date of revision:
Handle: RePEc:hst:ghsdps:gd09-072
Contact details of provider: Postal: 2-1 Naka, Kunitachi City, Tokyo 186
Phone: +81-42-580-8327
Fax: +81-42-580-8333
Web page: http://www.ier.hit-u.ac.jp/Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  2. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
  3. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
  4. Miyao, Ryuzo, 2002. "The Effects of Monetary Policy in Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 376-92, May.
  5. Takeshi Kimura & Hiroshi Kobayashi & Jun Muranaga & Hiroshi Ugai, 2003. "The effect of the increase in the monetary base of Japan's economy at zero interest rates: an empirical analysis," BIS Papers chapters, in: Bank for International Settlements (ed.), Monetary policy in a changing environment, volume 19, pages 276-312 Bank for International Settlements.
  6. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," IMES Discussion Paper Series 11-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
  7. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
  8. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, 01.
  9. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  10. Inoue, Tomoo & Okimoto, Tatsuyoshi, 2008. "Were there structural breaks in the effects of Japanese monetary policy? Re-evaluating policy effects of the lost decade," Journal of the Japanese and International Economies, Elsevier, vol. 22(3), pages 320-342, September.
  11. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
  12. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
  13. Jouchi Nakajima, 2011. "Monetary Policy Transmission under Zero Interest Rates: An Extended Time-Varying Parameter Vector Autoregression Approach," IMES Discussion Paper Series 11-E-08, Institute for Monetary and Economic Studies, Bank of Japan.
  14. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  15. Miyao, Ryuzo, 2000. "The Role of Monetary Policy in Japan: A Break in the 1990s?," Journal of the Japanese and International Economies, Elsevier, vol. 14(4), pages 366-384, December.
  16. Ippei Fujiwara, 2004. "Evaluating Monetary Policy When Nominal Interest Rates Are Almost Zero," Econometric Society 2004 Far Eastern Meetings 620, Econometric Society.
  17. Iwata, Shigeru & Wu, Shu, 2006. "Estimating monetary policy effects when interest rates are close to zero," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1395-1408, October.
  18. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649 Elsevier.
  19. Christiane Baumeister & Eveline Durinck & Gert Peersman, 2008. "Liquidity, inflation and asset prices in a time-varying framework for the euro area," Working Paper Research 142, National Bank of Belgium.
  20. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd09-072. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tatsuji Makino)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.