IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v25y2010i1p71-92.html

Large Bayesian vector auto regressions

Author

Listed:
  • Marta Bańbura
  • Domenico Giannone
  • Lucrezia Reichlin

Abstract

This paper shows that vector auto regression (VAR) with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results of De Mol and co‐workers (2008) and show that, when the degree of shrinkage is set in relation to the cross‐sectional dimension, the forecasting performance of small monetary VARs can be improved by adding additional macroeconomic variables and sectoral information. In addition, we show that large VARs with shrinkage produce credible impulse responses and are suitable for structural analysis. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
  • Handle: RePEc:wly:japmet:v:25:y:2010:i:1:p:71-92
    DOI: 10.1002/jae.1137
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.1137
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.1137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:25:y:2010:i:1:p:71-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.