IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v12y1997i2p99-132.html
   My bibliography  Save this article

Numerical Methods for Estimation and Inference in Bayesian VAR-Models

Author

Listed:
  • Kadiyala, K Rao
  • Karlsson, Sune

Abstract

In Bayesian analysis of vector autoregressive models, and especially in forecasting applications, the Minnesota prior of Litterman is frequently used. In many cases other prior distributions provided better forecasts and are preferable from a theoretical standpoint. Several of these priors require numerical methods in order to evaluate the posterior distribution. Different ways of implementing Monte Carlo integration are considered. It is found that Gibbs sampling performs as well as, or better, then importance sampling and that the Gibbs sampling algorithms are less adversely affected by model size. We also report on the forecasting performance of the different prior distributions

Suggested Citation

  • Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  • Handle: RePEc:jae:japmet:v:12:y:1997:i:2:p:99-132
    as

    Download full text from publisher

    File URL: http://qed.econ.queensu.ca:80/jae/1997-v12.2/
    File Function: Supporting data files and programs
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. NUMERICAL METHODS FOR ESTIMATION AND INFERENCE IN BAYESIAN VAR‐MODELS (Journal of Applied Econometrics 1997) in ReplicationWiki
    2. NUMERICAL METHODS FOR ESTIMATION AND INFERENCE IN BAYESIAN VAR-MODELS (Journal of Applied Econometrics 1997) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:12:y:1997:i:2:p:99-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.