IDEAS home Printed from https://ideas.repec.org/a/fip/fedmqr/y1984ifallnv.8no.4x1.html
   My bibliography  Save this article

Improving economic forecasting with Bayesian vector autoregression

Author

Listed:
  • Richard M. Todd

Abstract

No abstract is available for this item.

Suggested Citation

  • Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
  • Handle: RePEc:fip:fedmqr:y:1984:i:fall:n:v.8no.4:x:1
    as

    Download full text from publisher

    File URL: http://www.minneapolisfed.org/research/common/pub_detail.cfm?pb_autonum_id=176
    Download Restriction: no

    File URL: http://www.minneapolisfed.org/research/QR/QR843.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Terrence Kinal & Jonathan Ratner, 1986. "A VAR Forecasting Model of a Regional Economy: Its Construction and Comparative Accuracy," International Regional Science Review, , vol. 10(2), pages 113-126, August.
    2. John H. Kareken, 1983. "Deposit insurance reform or deregulation is the cart, not the horse," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 7(Spr).
    3. Thomas B. Fomby & William C. Gruben & James G. Hoehn, 1984. "Some time series methods of forecasting the Texas economy," Working Papers 8402, Federal Reserve Bank of Dallas.
    4. Robert B. Litterman & Thomas M. Supel, 1983. "Using vector autoregressions to measure the uncertainty in Minnesota's revenue forecasts," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 7(Spr).
    5. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    7. Robert B. Litterman, 1984. "Forecasting with Bayesian vector autoregressions four years of experience," Staff Report 95, Federal Reserve Bank of Minneapolis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ford, Stephen A., 1986. "A Beginner'S Guide To Vector Autoregression," Staff Papers 13527, University of Minnesota, Department of Applied Economics.
    2. Phillips, P. C. B., 1987. "Asymptotic Expansions in Nonstationary Vector Autoregressions," Econometric Theory, Cambridge University Press, vol. 3(1), pages 45-68, February.
    3. Agiakloglou, Christos & Gkouvakis, Michail, 2015. "Causal interrelations among market fundamentals: Evidence from the European Telecommunications sector," The Quarterly Review of Economics and Finance, Elsevier, vol. 55(C), pages 150-159.
    4. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    5. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    6. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    7. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    8. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    9. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    10. Jarociński, Marek & Marcet, Albert, 2019. "Priors about observables in vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(2), pages 238-255.
    11. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    12. Espinosa Acuña, Óscar A. & Vaca González, Paola A. & Avila Forero, Raúl A., 2013. "Elasticidades de demanda por electricidad e impactos macroecon_omicos del precio de la energía eléctrica en Colombia || Elasticity of Electricity Demand and Macroeconomics Impacts of Electricity Price," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 216-249, December.
    13. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Ivan Jeliazkov & Justin L. Tobias (ed.), Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Publishing Ltd.
    14. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    15. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    16. Francisco F. R. Ramos, 1996. "Forecasting market shares using VAR and BVAR models: A comparison of their forecasting performance," Econometrics 9601003, University Library of Munich, Germany.
    17. Clarida, Richard H & Friedman, Benjamin M, 1984. "The Behavior of U.S. Short-Term Interest Rates since October 1979," Journal of Finance, American Finance Association, vol. 39(3), pages 671-682, July.
    18. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    19. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    20. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedmqr:y:1984:i:fall:n:v.8no.4:x:1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cfrbmus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/cfrbmus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.