IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v97y2015i2p436-451.html

Prior Selection for Vector Autoregressions

Author

Listed:
  • Domenico Giannone

    (Universitá LUISS, Université Libre de Bruxelles, and CEPR)

  • Michele Lenza

    (European Central Bank and Université Libre de Bruxelles)

  • Giorgio E. Primiceri

    (Northwestern University, CEPR, and NBER)

Abstract

Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-of-sample forecasts, particularly for models with many variables. A solution to this problem is to use informative priors in order to shrink the richly parameterized unrestricted model toward a parsimonious naıve benchmark, and thus reduce estimation uncertainty. This paper studies the optimal choice of the informativeness of these priors, which we treat as additional parameters, in the spirit of hierarchical modeling. This approach, theoretically grounded and easy to implement, greatly reduces the number and importance of subjective choices in the setting of the prior. Moreover, it performs very well in terms of both out-of-sample forecasting—as well as factor models—and accuracy in the estimation of impulse response functions. © 2015 The President and Fellows of Harvard College and the Massachusetts Institute of Technology

Suggested Citation

  • Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
  • Handle: RePEc:tpr:restat:v:97:y:2015:i:2:p:436-451
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00483
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E00 - Macroeconomics and Monetary Economics - - General - - - General
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:97:y:2015:i:2:p:436-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.