IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Prior selection for vector autoregressions

  • Giannone, Domenico
  • Lenza, Michele
  • Primiceri, Giorgio E.

Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-ofsample forecasts, particularly for models with many variables. A solution to this problem is to use informative priors, in order to shrink the richly parameterized unrestricted model towards a parsimonious naïve benchmark, and thus reduce estimation uncertainty. This paper studies the optimal choice of the informativeness of these priors, which we treat as additional parameters, in the spirit of hierarchical modeling. This approach is theoretically grounded, easy to implement, and greatly reduces the number and importance of subjective choices in the setting of the prior. Moreover, it performs very well both in terms of out-of-sample forecasting—as well as factor models—and accuracy in the estimation of impulse response functions. JEL Classification: C11, C32, C53, E37

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1494.pdf
Download Restriction: no

Paper provided by European Central Bank in its series Working Paper Series with number 1494.

as
in new window

Length:
Date of creation: Nov 2012
Date of revision:
Handle: RePEc:ecb:ecbwps:20121494
Contact details of provider: Postal: 60640 Frankfurt am Main, Germany
Phone: +49 69 1344 0
Fax: +49 69 1344 6000
Web page: http://www.ecb.europa.eu/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Marek Jarocinski & Albert Marcet, 2011. "Autoregressions in Small Samples, Priors about Observables and Initial Conditions," CEP Discussion Papers dp1061, Centre for Economic Performance, LSE.
  2. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
  3. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  4. Justiniano, Alejandro & Primiceri, Giorgio E & Tambalotti, Andrea, 2008. "Investment Shocks and Business Cycles," CEPR Discussion Papers 6739, C.E.P.R. Discussion Papers.
  5. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
  6. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  7. Domenico Giannone & Martha Banbura & Lucrezia Reichlin, 2008. "Bayesian VARs with large panels," ULB Institutional Repository 2013/13388, ULB -- Universite Libre de Bruxelles.
  8. Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
  9. Fabio Canova, 2007. "DSGE Models, Solutions, and Approximations, from Methods for Applied Macroeconomic Research
    [Methods for Applied Macroeconomic Research]
    ," Introductory Chapters, Princeton University Press.
  10. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
  11. Chris Bloor & Troy Matheson, 2009. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/02, Reserve Bank of New Zealand.
  12. A. Carriero & G. Kapetanios & M. Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Economics Working Papers ECO2008/33, European University Institute.
  13. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
  14. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  15. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank, Research Centre.
  16. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
  17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, 01.
  18. Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
  19. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
  20. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  21. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-68, November.
  22. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  23. Domenico Giannone & Michele Lenza & Lucrezia Reichlin, 2008. "Explaining The Great Moderation: It Is Not The Shocks," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 621-633, 04-05.
  24. John C. Robertson & Ellis W. Tallman, 1999. "Improving forecasts of the federal funds rate in a policy model," Working Paper 99-3, Federal Reserve Bank of Atlanta.
  25. Fabio Canova, 2007. "Bayesian Time Series and DSGE Models, from Methods for Applied Macroeconomic Research
    [Methods for Applied Macroeconomic Research]
    ," Introductory Chapters, Princeton University Press.
  26. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  27. Kadiyala, K.R. & Karlsson, L.S., 1989. "Forecasting With Bayesian Vector Autoregressions," Purdue University Economics Working Papers 962, Purdue University, Department of Economics.
  28. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
  29. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
  30. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  31. Geweke, John, 2001. "Bayesian econometrics and forecasting," Journal of Econometrics, Elsevier, vol. 100(1), pages 11-15, January.
  32. Lopes, Hedibert Freitas & Moreira, Ajax R. Bello & Schmidt, Alexandra Mello, 1999. "Hyperparameter estimation in forecast models," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 387-410, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20121494. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.