IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A nine variable probabilistic macroeconomic forecasting model

  • Christopher A. Sims

This model extends one originally constructed by Robert Litterman in 1980 and used continuously since then to prepare quarterly forecasts. The current version is 3 variables larger than Litterman’s original model, and it now allows time variation in coefficients, predictable time variation in forecast error variance, and non-normality in disturbances. Despite this elaboration the model in a sense has just 12 parameters free to fit the behavior of 9 variables in 9 equations. The paper reports the model structure and summarizes some aspects of its recent forecasting performance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://minneapolisfed.org/research/common/pub_detail.cfm?pb_autonum_id=14
Download Restriction: no

File URL: http://minneapolisfed.org/research/DP/DP14.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of Minneapolis in its series Discussion Paper / Institute for Empirical Macroeconomics with number 14.

as
in new window

Length:
Date of creation: 1989
Date of revision:
Handle: RePEc:fip:fedmem:14
Contact details of provider: Postal: 90 Hennepin Avenue, P.O. Box 291, Minneapolis, MN 55480-0291
Phone: (612) 204-5000
Web page: http://minneapolisfed.org/

More information through EDIRC

Order Information: Web: http://www.minneapolisfed.org/pubs/ Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
  2. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
  3. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  4. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedmem:14. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janelle Ruswick)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.