IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v49y2017i38p3880-3890.html
   My bibliography  Save this article

GDP nowcasting: application and constraints in a small open developing economy

Author

Listed:
  • Ashwin Madhou
  • Tayushma Sewak
  • Imad Moosa
  • Vikash Ramiah

Abstract

Despite data limitations, an attempt is made to find out if a GDP nowcasting model can provide reliable forecasts for a small open economy. Two competing Bayesian vector autoregressive models are tested rigorously to obtain the optimal model by minimizing in-sample forecasting errors. The main finding of this study is that GDP nowcasting can produce reliable results for a small open economy despite the unavailability of sufficient data sets and the lack of high frequency indicators.

Suggested Citation

  • Ashwin Madhou & Tayushma Sewak & Imad Moosa & Vikash Ramiah, 2017. "GDP nowcasting: application and constraints in a small open developing economy," Applied Economics, Taylor & Francis Journals, vol. 49(38), pages 3880-3890, August.
  • Handle: RePEc:taf:applec:v:49:y:2017:i:38:p:3880-3890
    DOI: 10.1080/00036846.2016.1270417
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2016.1270417
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Malin Adolfson & Michael K. Andersson & Jesper Lindé & Mattias Villani & Anders Vredin, 2007. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 111-144, December.
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    4. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    5. Anatoli Kuprianov & William Lupoletti, 1984. "The economic outlook for the Fifth District states in 1984 : forecasts from vector autoregression models," Economic Review, Federal Reserve Bank of Richmond, issue Jan, pages 12-23.
    6. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
    7. Preston J. Miller & Daniel M. Chin, 1996. "Using monthly data to improve quarterly model forecasts," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Spr, pages 16-33.
    8. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    9. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    10. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    11. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    12. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    13. Alain Kabundi & Elmarie Nel & Franz Ruch, 2016. "Nowcasting Real GDP growth in South Africa," Working Papers 7068, South African Reserve Bank.
    14. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    15. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    16. Higgins, Patrick C., 2014. "GDPNow: A Model for GDP "Nowcasting"," FRB Atlanta Working Paper 2014-7, Federal Reserve Bank of Atlanta.
    17. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    18. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    19. Terrence Kinal & Jonathan Ratner, 1986. "A VAR Forecasting Model of a Regional Economy: Its Construction and Comparative Accuracy," International Regional Science Review, , vol. 10(2), pages 113-126, August.
    20. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    21. Domit, Sílvia & Monti, Francesca & Sokol, Andrej, 2016. "A Bayesian VAR benchmark for COMPASS," Bank of England working papers 583, Bank of England.
    22. Ricardo Mourinho Félix & Luís Catela Nunes, 2003. "Forecasting Euro Area Aggregates with Bayesian VAR and VECM Models," Working Papers w200304, Banco de Portugal, Economics and Research Department.
    23. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    24. Clements, Michael P & Hendry, David F, 1996. "Intercept Corrections and Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 475-494, Sept.-Oct.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:onb:oenbfi:y:2018:i:q4/18:b:1 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:49:y:2017:i:38:p:3880-3890. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.