IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Real-time forecasting with a mixed-frequency VAR

  • Frank Schorfheide
  • Dongho Song

This paper develops a vector autoregression (VAR) for macroeconomic time series which are observed at mixed frequencies – quarterly and monthly. The mixed-frequency VAR is cast in state-space form and estimated with Bayesian methods under a Minnesota-style prior. Using a real-time data set, we generate and evaluate forecasts from the mixed-frequency VAR and compare them to forecasts from a VAR that is estimated based on data time-aggregated to quarterly frequency. We document how information that becomes available within the quarter improves the forecasts in real time.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by Federal Reserve Bank of Minneapolis in its series Working Papers with number 701.

in new window

Date of creation: 2012
Date of revision:
Handle: RePEc:fip:fedmwp:701
Contact details of provider: Postal:
90 Hennepin Avenue, P.O. Box 291, Minneapolis, MN 55480-0291

Phone: (612) 204-5000
Web page:

More information through EDIRC

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kling, John L & Bessler, David A, 1989. "Calibration-Based Predictive Distributions: An Application of Prequential Analysis to Interest Rates, Money, Prices, and Output," The Journal of Business, University of Chicago Press, vol. 62(4), pages 477-99, October.
  2. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
  3. Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
  4. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
  5. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  6. Rodriguez, Abel & Puggioni, Gavino, 2010. "Mixed frequency models: Bayesian approaches to estimation and prediction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 293-311, April.
  7. Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
  8. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2008. "A Monthly Indicator of the Euro Area GDP," Economics Working Papers ECO2008/32, European University Institute.
  9. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
  10. Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
  11. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  12. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
  13. Edward Herbst & Frank Schorfheide, 2011. "Evaluating DSGE model forecasts of comovements," Working Papers 11-5, Federal Reserve Bank of Philadelphia.
  14. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1986. "Forecasting and conditional projection using realistic prior distribution," Staff Report 93, Federal Reserve Bank of Minneapolis.
  15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2011. "Bayesian VARs: specification choices and forecast accuracy," Working Paper 1112, Federal Reserve Bank of Cleveland.
  16. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank, Research Centre.
  17. Ching Wai (Jeremy) Chiu & Bjørn Eraker & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2011. "Estimating VAR's sampled at mixed or irregular spaced frequencies : a Bayesian approach," Research Working Paper RWP 11-11, Federal Reserve Bank of Kansas City.
  18. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, Elsevier.
  19. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, December.
  20. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(3), pages 698-721.
  21. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  22. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, Elsevier.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedmwp:701. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jannelle Ruswick)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.