IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Estimating VAR's sampled at mixed or irregular spaced frequencies : a Bayesian approach

  • Ching Wai (Jeremy) Chiu
  • Bjørn Eraker
  • Andrew T. Foerster
  • Tae Bong Kim
  • Hernán D. Seoane

Economic data are collected at various frequencies but econometric estimation typically uses the coarsest frequency. This paper develops a Gibbs sampler for estimating VAR models with mixed and irregularly sampled data. The approach allows efficient likelihood inference even with irregular and mixed frequency data. The Gibbs sampler uses simple conjugate posteriors even in high dimensional parameter spaces, avoiding a non-Gaussian likelihood surface even when the Kalman filter applies. Two applications illustrate the methodology and demonstrate efficiency gains from the mixed frequency estimator: one constructs quarterly GDP estimates from monthly data, the second uses weekly financial data to inform monthly output.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.kansascityfed.org/publicat/reswkpap/pdf/rwp11-11.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of Kansas City in its series Research Working Paper with number RWP 11-11.

as
in new window

Length:
Date of creation: 2011
Date of revision:
Handle: RePEc:fip:fedkrw:rwp11-11
Contact details of provider: Postal:
1 Memorial Drive, Kansas City, MO 64198-0001

Phone: (816) 881-2254
Web page: http://www.kansascityfed.org/

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Nicholas Bloom, 2007. "The Impact of Uncertainty Shocks," NBER Working Papers 13385, National Bureau of Economic Research, Inc.
  2. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 0700, European Central Bank.
  3. Kilian, Lutz & Vigfusson, Robert J., 2011. "Nonlinearities in the Oil Price-Output Relationship," CEPR Discussion Papers 8174, C.E.P.R. Discussion Papers.
  4. Eric M. Leeper & Tao Zha, 2003. "Modest policy interventions," FRB Atlanta Working Paper 2003-24, Federal Reserve Bank of Atlanta.
  5. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14, pages C25-C44, 02.
  6. David Hendry & Guillaume Chevillon, 2004. "Non-Parametric Direct Multi-step Estimation for Forecasting Economic Processes," Economics Series Working Papers 196, University of Oxford, Department of Economics.
  7. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
  8. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
  9. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  10. Karim Barhoumi & Szilard Benk & Riccardo Cristadoro & Ard Den Reijer & Audrone Jakaitiene & Piotr Jelonek & António Rua & Gerhard Rünstler & Karsten Ruth & Christophe Van Nieuwenhuyze, 2008. "Short-term forecasting of GDP using large monthly datasets - a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
  11. Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
  12. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
  13. Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
  14. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
  15. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  16. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
  17. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
  18. Domenico Giannone & Martha Banbura & Lucrezia Reichlin, 2008. "Bayesian VARs with large panels," ULB Institutional Repository 2013/13388, ULB -- Universite Libre de Bruxelles.
  19. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
  20. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
  21. International Monetary Fund, 2007. "Oil Shocks and External Balances," IMF Working Papers 07/110, International Monetary Fund.
  22. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
  23. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-75, November.
  24. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  25. Marcellino, Massimiliano & Musso, Alberto, 2010. "Real time estimates of the euro area output gap: reliability and forecasting performance," Working Paper Series 1157, European Central Bank.
  26. Neville Francis & Eric Ghysels & Michael T. Owyang, 2011. "The low-frequency impact of daily monetary policy shocks," Working Papers 2011-009, Federal Reserve Bank of St. Louis.
  27. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, 02.
  28. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  29. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(01), pages 108-124, April.
  30. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  31. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  32. Carol Corrado & Mark Greene, 1984. "Reducing uncertainty in short-term projections: linkage of monthly and quarterly models," Special Studies Papers 207, Board of Governors of the Federal Reserve System (U.S.).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedkrw:rwp11-11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lu Dayrit)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.