IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Now-casting and the real-time data flow

  • Banbura, Marta
  • Giannone, Domenico
  • Modugno, Michele
  • Reichlin, Lucrezia

The term now-casting is a contraction for now and forecasting and has been used for a long-time in meteorology and recently also in economics In this paper we survey recent developments on economic now-casting with special focus on those models that formalize key features of how market participants and policy makers read macroeconomic data releases in real time, which involves: monitoring many data, forming expectations about them and revising the assessment on the state of the economy whenever realizations diverge sizeably from those expectations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=9112
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 9112.

as
in new window

Length:
Date of creation: Sep 2012
Date of revision:
Handle: RePEc:cpr:ceprdp:9112
Contact details of provider: Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
  2. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
  3. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
  4. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  5. Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
  6. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  7. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 0622, European Central Bank.
  8. D'Agostino, Antonello & McQuinn, Kieran & O'Brien, Derry, 2008. "Now-casting Irish GDP," Research Technical Papers 9/RT/08, Central Bank of Ireland.
  9. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
  10. Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
  11. Rachida Ouysse, 2011. "Comparison of Bayesian moving Average and Principal Component Forecast for Large Dimensional Factor Models," Discussion Papers 2012-03, School of Economics, The University of New South Wales.
  12. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  13. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
  14. Barhoumi, K. & Darné, O. & Ferrara, L., 2009. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Working papers 232, Banque de France.
  15. Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity in Real-Time: The Role of Confidence Indicators," CSEF Working Papers 240, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  16. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  17. Elena Angelini & Marta Banbura & Gerhard Rünstler, 2010. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing,Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-22.
  18. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  19. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
  20. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2013. "Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility," Temi di discussione (Economic working papers) 896, Bank of Italy, Economic Research and International Relations Area.
  21. Kajal Lahiri & George Monokroussos, 2011. "Nowcasting US GDP: The role of ISM Business Surveys," Discussion Papers 11-01, University at Albany, SUNY, Department of Economics.
  22. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, vol. 42(1), pages 95-119, February.
  23. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  24. Jasper de Winter, 2011. "Forecasting GDP growth in times of crisis: private sector forecasts versus statistical models," DNB Working Papers 320, Netherlands Central Bank, Research Department.
  25. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, 02.
  26. Matheson, Troy D., 2010. "An analysis of the informational content of New Zealand data releases: The importance of business opinion surveys," Economic Modelling, Elsevier, vol. 27(1), pages 304-314, January.
  27. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non-linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300.
  28. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
  29. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, 08.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:9112. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

The email address of this maintainer does not seem to be valid anymore. Please ask to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.