IDEAS home Printed from https://ideas.repec.org/h/spr/conchp/978-3-7908-1605-1_2.html

Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data

In: Ifo Survey Data in Business Cycle and Monetary Policy Analysis

Author

Listed:
  • Stefan Mittnik

    (University of Munich
    Ifo Institute for Economic Research
    Center for Financial Studies)

  • Peter Zadrozny

    (Bureau of Labor Statistics)

Abstract

The paper illustrates and evaluates a Kalman filtering method for forecasting German real GDP at monthly intervals. German real GDP is produced at quarterly intervals but analysts and decision makers often want monthly GDP forecasts. Quarterly GDP could be regressed on monthly indicators, which would pick up monthly feedbacks from the indicators to GDP, but would not pick up implicit monthly feedbacks from GDP onto itself or the indicators. An efficient forecasting model which aims to incorporate all significant correlations in monthly-quarterly data should include all significant monthly feedbacks. We do this with estimated VAR(2) models of quarterly GDP and up to three monthly indicator variables, estimated using a Kalman-filtering-based maximum-likelihood estimation method. Following the method, we estimate monthly and quarterly VAR(2) models of quarterly GDP, monthly industrial production, and monthly, current and expected, business conditions. The business conditions variables are produced by the Ifo Institute from its own surveys. We use early in-sample data to estimate models and later out-of-sample data to produce and evaluate forecasts. The monthly maximum-likelihood-estimated models produce monthly GDP forecasts. The Kalman filter is used to compute the likelihood in estimation and to produce forecasts. Generally, the monthly German GDP forecasts from 3 to 24 months ahead are competitive with quarterly German GDP forecasts for the same time-span ahead, produced using the same method and the same data in purely quarterly form. However, the present mixed-frequency method produces monthly GDP forecasts for the first two months of a quarter ahead which are more accurate than one-quarter-ahead GDP forecasts based on the purely-quarterly data. Moreover, quarterly models based on purely-quarterly data generally cannot be transformed into monthly models which produce equally accurate intra-quarterly monthly forecasts.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Stefan Mittnik & Peter Zadrozny, 2005. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 19-48, Springer.
  • Handle: RePEc:spr:conchp:978-3-7908-1605-1_2
    DOI: 10.1007/3-7908-1605-1_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:conchp:978-3-7908-1605-1_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.