IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20101275.html
   My bibliography  Save this paper

Nowcasting

Author

Listed:
  • Bańbura, Marta
  • Giannone, Domenico
  • Reichlin, Lucrezia

Abstract

We define nowcasting as the prediction of the present, the very near future and the very recent past. Crucial in this process is to use timely monthly information in order to nowcast key economic variables, such as e.g. GDP, that are typically collected at low frequency and published with long delays. Until recently, nowcasting had received very little attention by the academic literature, although it was routinely conducted in policy institutions either through a judgemental process or on the basis of simple models. We argue that the nowcasting process goes beyond the simple production of an early estimate as it essentially requires the assessment of the impact of new data on the subsequent forecast revisions for the target variable. We design a statistical model which produces a sequence of nowcasts in relation to the real time releases of various economic data. The methodology allows to process a large amount of information, as it is traditionally done by practitioners using judgement, but it does it in a fully automatic way. In particular, it provides an explicit link between the news in consecutive data releases and the resulting forecast revisions. To illustrate our ideas, we study the nowcast of euro area GDP in the fourth quarter of 2008. JEL Classification: E52, C53, C33

Suggested Citation

  • Bańbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2010. "Nowcasting," Working Paper Series 1275, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20101275
    as

    Download full text from publisher

    File URL: http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1275.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    2. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    3. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    4. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2008. "Short-Term Forecasting of GDP Using Large Monthly Datasets: A Pseudo Real-Time Forecast Evaluation Exercise," Bank of Lithuania Working Paper Series 1, Bank of Lithuania.
    5. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    6. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    7. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    8. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    9. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    10. Matheson, Troy D., 2010. "An analysis of the informational content of New Zealand data releases: The importance of business opinion surveys," Economic Modelling, Elsevier, vol. 27(1), pages 304-314, January.
    11. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    12. Gabe de Bondt & Tuomas Peltonen & Daniel Santabarbara, 2011. "Booms and busts in China's stock market: estimates based on fundamentals," Applied Financial Economics, Taylor & Francis Journals, vol. 21(5), pages 287-300.
    13. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, pages 1024-1034.
    14. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    15. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 622, European Central Bank.
    16. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    17. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    18. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, pages 540-554.
    19. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, pages 95-119.
    20. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank, Research Centre.
    21. Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity In Real Time: The Role Of Confidence Indicators," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 90-97, October.
    22. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    23. D'Agostino, Antonello & McQuinn, Kieran & O'Brien, Derry, 2008. "Now-casting Irish GDP," Research Technical Papers 9/RT/08, Central Bank of Ireland.
    24. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    25. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    26. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    27. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    28. Antonello D'Agostino & Kieran McQuinn & Derry O’Brien, 2012. "Nowcasting Irish GDP," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, pages 21-31.
    29. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    30. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    31. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, pages 95-119.
    32. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Feldkircher & Florian Huber & Josef Schreiner & Marcel Tirpák & Peter Tóth & Julia Wörz, 2015. "Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), pages 56-75.
    2. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.

    More about this item

    Keywords

    factor model; forecasting; news; Nowcasting;

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20101275. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications). General contact details of provider: http://edirc.repec.org/data/emieude.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.