IDEAS home Printed from https://ideas.repec.org/a/onb/oenbfi/y2015i2b1.html
   My bibliography  Save this article

Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries

Author

Listed:
  • Martin Feldkircher

    () (Oesterreichische Nationalbank, Foreign Research Division)

  • Florian Huber

    () (Vienna University of Economics and Business (WU))

  • Josef Schreiner

    () (Oesterreichische Nationalbank, Economic Analysis Division)

  • Marcel Tirpák

    () (European Central Bank, Convergence and Competitiveness Division)

  • Peter Tóth

    ()

  • Julia Wörz

    () (Foreign Research Division, Oesterreichische Nationalbank)

Abstract

In this article, we describe short-term forecasting models of economic activity for seven countries in Central, Eastern and Southeastern Europe (CESEE) and compare their forecasting performance since the outbreak of the Great Recession. To build these models, we use four variants of bridge equations and a dynamic factor model for each country. Given the differences in availability of monthly indicators across countries and the rather short time period over which these indicators are available, we favor small-scale forecasting models. We selected monthly indicators on the basis of expert judgment, correlation analysis and Bayesian model averaging techniques. While our models generally outperform a purely time series-based forecast for all CESEE countries, there is no single technique that consistently produces the best out-of-sample forecast. To maximize forecasting accuracy, we therefore recommend selecting a country-specific modeling approach for every CESEE economy on the basis of out-of-sample forecasting performance.

Suggested Citation

  • Martin Feldkircher & Florian Huber & Josef Schreiner & Marcel Tirpák & Peter Tóth & Julia Wörz, 2015. "Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 56-75.
  • Handle: RePEc:onb:oenbfi:y:2015:i:2:b:1
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:431880f1-a42d-4de3-92d5-0d14bd38cb48/feei_2015_q2_studies_feldkircher.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    4. Martin Feldkircher, 2012. "Forecast Combination and Bayesian Model Averaging: A Prior Sensitivity Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(4), pages 361-376, July.
    5. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    6. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    8. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
    9. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    10. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    11. Schumacher, Christian, 2014. "MIDAS and bridge equations," Discussion Papers 26/2014, Deutsche Bundesbank.
    12. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    13. James H. Stock & Mark W. Watson, 2003. "Has the business cycle changed?," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 9-56.
    14. Mathias Moser & Paul Hofmarcher, 2014. "Model Priors Revisited: Interaction Terms In Bma Growth Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 344-347, March.
    15. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    16. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    17. Eduardo Ley & Mark F.J. Steel, 2009. "On the effect of prior assumptions in Bayesian model averaging with applications to growth regression This article was published online on 30 March 2009. An error was subsequently identified. This not," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 651-674.
    18. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    19. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    20. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    21. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    22. Banbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2010. "Nowcasting," CEPR Discussion Papers 7883, C.E.P.R. Discussion Papers.
    23. Bharat Trehan, 1989. "Forecasting growth in current quarter real GNP," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 39-52.
    24. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    25. Bharat Trehan, 1992. "Predicting contemporaneous output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    26. Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.
    27. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    28. Bialowolski, Piotr & Kuszewski, Tomasz & Witkowski, Bartosz, 2015. "Bayesian averaging vs. dynamic factor models for forecasting economic aggregates with tendency survey data," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 9, pages 1-37.
    29. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    30. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    31. Hahn, Elke & Skudelny, Frauke, 2008. "Early estimates of euro area real GDP growth: a bottom up approach from the production side," Working Paper Series 975, European Central Bank.
    32. Maximo Camacho & Gabriel Perez Quiros, 2011. "Spain‐Sting: Spain Short‐Term Indicator Of Growth," Manchester School, University of Manchester, vol. 79(s1), pages 594-616, June.
    33. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    2. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP
      [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]
      ," MPRA Paper 63713, University Library of Munich, Germany.
    3. repec:onb:oenbfi:y:2018:i:q4/18:b:1 is not listed on IDEAS

    More about this item

    Keywords

    nowcasting; bridge equations; dynamic factor models; Bayesian model averaging; Central; Eastern and Southeastern Europe;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbfi:y:2015:i:2:b:1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Markus Eller). General contact details of provider: http://edirc.repec.org/data/oenbbat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.