IDEAS home Printed from https://ideas.repec.org/a/onb/oenbfi/y2015i2b1.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries

Author

Listed:
  • Martin Feldkircher

    (Oesterreichische Nationalbank, Foreign Research Division)

  • Florian Huber

    (Vienna University of Economics and Business (WU))

  • Josef Schreiner

    (Oesterreichische Nationalbank, Economic Analysis Division)

  • Marcel Tirpák

    (European Central Bank, Convergence and Competitiveness Division)

  • Peter Tóth
  • Julia Wörz

    (Foreign Research Division, Oesterreichische Nationalbank)

Abstract

In this article, we describe short-term forecasting models of economic activity for seven countries in Central, Eastern and Southeastern Europe (CESEE) and compare their forecasting performance since the outbreak of the Great Recession. To build these models, we use four variants of bridge equations and a dynamic factor model for each country. Given the differences in availability of monthly indicators across countries and the rather short time period over which these indicators are available, we favor small-scale forecasting models. We selected monthly indicators on the basis of expert judgment, correlation analysis and Bayesian model averaging techniques. While our models generally outperform a purely time series-based forecast for all CESEE countries, there is no single technique that consistently produces the best out-of-sample forecast. To maximize forecasting accuracy, we therefore recommend selecting a country-specific modeling approach for every CESEE economy on the basis of out-of-sample forecasting performance.

Suggested Citation

  • Martin Feldkircher & Florian Huber & Josef Schreiner & Marcel Tirpák & Peter Tóth & Julia Wörz, 2015. "Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 56-75.
  • Handle: RePEc:onb:oenbfi:y:2015:i:2:b:1
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:431880f1-a42d-4de3-92d5-0d14bd38cb48/feei_2015_q2_studies_feldkircher.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    4. Martin Feldkircher, 2012. "Forecast Combination and Bayesian Model Averaging: A Prior Sensitivity Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(4), pages 361-376, July.
    5. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    6. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    8. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    9. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
    10. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    11. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    12. Schumacher, Christian, 2014. "MIDAS and bridge equations," Discussion Papers 26/2014, Deutsche Bundesbank.
    13. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    14. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    15. James H. Stock & Mark W. Watson, 2003. "Has the business cycle changed?," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 9-56.
    16. Mathias Moser & Paul Hofmarcher, 2014. "Model Priors Revisited: Interaction Terms In Bma Growth Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 344-347, March.
    17. repec:hal:journl:peer-00844811 is not listed on IDEAS
    18. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    19. Eduardo Ley & Mark F.J. Steel, 2009. "On the effect of prior assumptions in Bayesian model averaging with applications to growth regression This article was published online on 30 March 2009. An error was subsequently identified. This not," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 651-674.
    20. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    21. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    22. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    23. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    24. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    25. Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2010. "Nowcasting," CEPR Discussion Papers 7883, C.E.P.R. Discussion Papers.
    26. Bharat Trehan, 1989. "Forecasting growth in current quarter real GNP," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 39-52.
    27. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    28. Bharat Trehan, 1992. "Predicting contemporaneous output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    29. Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.
    30. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    31. Bialowolski, Piotr & Kuszewski, Tomasz & Witkowski, Bartosz, 2015. "Bayesian averaging vs. dynamic factor models for forecasting economic aggregates with tendency survey data," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-37.
    32. Jaroslaw Krajewski, 2009. "Estimating and Forecasting GDP in Poland with Dynamic Factor Model," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 139-145.
    33. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    34. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    35. Hahn, Elke & Skudelny, Frauke, 2008. "Early estimates of euro area real GDP growth: a bottom up approach from the production side," Working Paper Series 975, European Central Bank.
    36. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    37. Maximo Camacho & Gabriel Perez Quiros, 2011. "Spain‐Sting: Spain Short‐Term Indicator Of Growth," Manchester School, University of Manchester, vol. 79(s1), pages 594-616, June.
    38. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    39. Piotr Białowolski & Tomasz Kuszewski & Bartosz Witkowski, 2014. "Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(1), pages 53-68, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    2. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    3. Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Feldkircher & Florian Huber & Josef Schreiner & Julia Woerz & Marcel Tirpak & Peter Toth, 2015. "Small-scale nowcasting models of GDP for selected CESEE countries," Working and Discussion Papers WP 4/2015, Research Department, National Bank of Slovakia.
    2. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    3. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    4. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    5. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    6. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    7. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
    8. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
    9. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    10. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    11. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    12. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    13. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    14. Ángel Cuevas & Enrique Quilis, 2012. "A factor analysis for the Spanish economy," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(3), pages 311-338, September.
    15. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    16. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    17. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    18. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    19. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    20. Van Nieuwenhuyze, Christophe & Benk, Szilard & Rünstler, Gerhard & Cristadoro, Riccardo & Den Reijer, Ard & Jakaitiene, Audrone & Jelonek, Piotr & Rua, António & Ruth, Karsten & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.

    More about this item

    Keywords

    nowcasting; bridge equations; dynamic factor models; Bayesian model averaging; Central; Eastern and Southeastern Europe;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbfi:y:2015:i:2:b:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Elisabeth Beckmann (email available below). General contact details of provider: https://edirc.repec.org/data/oenbbat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.