IDEAS home Printed from https://ideas.repec.org/p/ltv/wpaper/200805.html
   My bibliography  Save this paper

Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators

Author

Listed:
  • Konstantins Benkovskis

    (Bank of Latvia)

Abstract

The conjunctural information from monthly indicators, e.g. industrial production, retail trade turnover, M3, confidence indicators, etc. could partly replace GDP data before the first official release is published. It is possible to incorporate monthly indicators into short-term forecasting models of GDP using quarterly bridge equations or state space models. In many cases monthly indicators are released with a lag, and GDP forecasts based on actual figures are available only shortly before the official release. To eliminate this drawback, missing observations of monthly indicators could be forecasted using simple univariate time-series models. To perform real-time analysis of the forecasting performance of bridge equations and state space models, a real-time database containing real GDP series with 28 vintages of quarterly real GDP was created. According to calculations, only bridge equations and state space models containing M3 monthly data perform better than the benchmark ARIMA model. Both model types using M3 provide valuable information forecast for the first and final releases of GDP. This does not mean, however, that other conjunctural indicators should not be used in forecasting, as the analysis does not take into account possible future changes in links between monthly indicators and quarterly GDP growth.

Suggested Citation

  • Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.
  • Handle: RePEc:ltv:wpaper:200805
    as

    Download full text from publisher

    File URL: https://www.bank.lv/public_files/images/img_lb/izdevumi/english/citas/wp_2008-5_benkovsky.pdf
    Download Restriction: no

    File URL: https://www.macroeconomics.lv/sites/default/files/wp_2008-5_benkovsky.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    2. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    3. Robert Ingenito & Bharat Trehan, 1996. "Using monthly data to predict quarterly output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    4. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    5. Aleksejs Melihovs & Svetlana Rusakova, 2005. "Short-Term Forecasting of Economic Development in Latvia Using Business and Consumer Survey Data," Working Papers 2005/04, Latvijas Banka.
    6. Gerhard Fenz & Martin Spitzer, 2006. "An Unobserved Components Model to Forecast Austrian GDP," Working Papers 119, Oesterreichische Nationalbank (Austrian Central Bank).
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    9. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    10. Nicolas A. Cuche & Martin K. Hess, 1999. "Estimating Monthly GDP In A General Kalman Filter Framework: Evidence From Switzerland," Working Papers 99.02, Swiss National Bank, Study Center Gerzensee.
    11. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    12. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 622, European Central Bank.
    13. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
    14. James Mitchell & Richard J. Smith & Martin R. Weale & Stephen Wright & Eduardo L. Salazar, 2005. "An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth," Economic Journal, Royal Economic Society, vol. 115(501), pages 108-129, February.
    15. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bušs, Ginters, 2009. "Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach," MPRA Paper 16684, University Library of Munich, Germany.
    2. Shahzad Ahmad & Farooq Pasha, 2015. "A Pragmatic Model for Monetary Policy Analysis I: The Case of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 1-42.
    3. Martin Feldkircher & Florian Huber & Josef Schreiner & Marcel Tirpák & Peter Tóth & Julia Wörz, 2015. "Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 56-75.
    4. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    5. Hanif, Muhammad Nadim & Malik, Muhammad Jahanzeb, 2015. "Evaluating Performance of Inflation Forecasting Models of Pakistan," MPRA Paper 66843, University Library of Munich, Germany.
    6. Konstantīns Beņkovskis, 2010. "LATCOIN: determining medium to long-run tendencies of economic growth in Latvia in real time," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 10(2), pages 27-48, December.

    More about this item

    Keywords

    bridge equations; state space model; out-of-sample forecasting; real-time database; interpolation;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ltv:wpaper:200805. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Konstantins Benkovskis). General contact details of provider: http://edirc.repec.org/data/bolgvlv.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.