IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/101874.html
   My bibliography  Save this paper

Structural modeling and forecasting using a cluster of dynamic factor models

Author

Listed:
  • Glocker, Christian
  • Kaniovski, Serguei

Abstract

We propose a modeling approach involving a series of small-scale dynamic factor models. They are connected to each other within a cluster, whose linkages are derived from Granger-causality tests. This approach merges the benefits of large-scale macroeconomic and small-scale factor models, rendering our Cluster of Dynamic Factor Models (CDFM) useful for model-consistent nowcasting and forecasting on a larger scale. While the CDFM has a simple structure and is easy to replicate, its forecasts are more precise than those of a wide range of competing models and those of professional forecasters. Moreover, the CDFM allows forecasters to introduce their own judgment and hence produce conditional forecasts.

Suggested Citation

  • Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:101874
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/101874/1/MPRA_paper_101874.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Christian Glocker & Serguei Kaniovski, 2014. "A financial market stress indicator for Austria," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(3), pages 481-504, August.
    3. Schreiber, Sven & Soldatenkova, Natalia, 2016. "Anticipating business-cycle turning points in real time using density forecasts from a VAR," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 166-187.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Clive Granger & Yongil Jeon, 2004. "Forecasting Performance of Information Criteria with Many Macro Series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(10), pages 1227-1240.
    6. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    7. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    8. Mathy, Gabriel & Stekler, Herman, 2017. "Expectations and forecasting during the Great Depression: Real-time evidence from the business press," Journal of Macroeconomics, Elsevier, vol. 53(C), pages 1-15.
    9. Christian Glocker & Werner Hölzl, 2019. "Assessing the Economic Content of Direct and Indirect Business Uncertainty Measures," WIFO Working Papers 576, WIFO.
    10. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    11. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    12. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Fildes, Robert & Stekler, Herman, 2002. "Reply to the comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 503-505, December.
    15. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    16. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    17. Modugno, Michele & Soybilgen, Barış & Yazgan, Ege, 2016. "Nowcasting Turkish GDP and news decomposition," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1369-1384.
    18. Friesenbichler, Klaus S. & Glocker, Christian, 2019. "Tradability and productivity growth differentials across EU Member States," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 1-13.
    19. Maximo Camacho & Agustin Garcia‐Serrador, 2014. "The Euro‐Sting Revisited: The Usefulness of Financial Indicators to Obtain Euro Area GDP Forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 186-197, April.
    20. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    21. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    22. Patrick C. Higgins, 2014. "GDPNow: A Model for GDP \"Nowcasting\"," FRB Atlanta Working Paper 2014-7, Federal Reserve Bank of Atlanta.
    23. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    24. Liu, Xiaochun, 2019. "On tail fatness of macroeconomic dynamics," Journal of Macroeconomics, Elsevier, vol. 62(C).
    25. Glocker, Christian & Wegmueller, Philipp, 2018. "International evidence of time-variation in trend labor productivity growth," Economics Letters, Elsevier, vol. 167(C), pages 115-119.
    26. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    27. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    28. van der Ploeg, Frederick, 1985. "Econometrics and inconsistencies in the national accounts," Economic Modelling, Elsevier, vol. 2(1), pages 8-16, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Forecasting; Dynamic factor model; Granger causality; Structural modeling;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:101874. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.