IDEAS home Printed from https://ideas.repec.org/p/wfo/wpaper/y2020i614.html
   My bibliography  Save this paper

Macroeconometric Forecasting Using a Cluster of Dynamic Factor Models

Author

Listed:
  • Christian Glocker

    (WIFO)

  • Serguei Kaniovski

Abstract

We propose a modelling approach involving a series of small-scale factor models. They are connected to each other within a cluster, whose linkages are derived from Granger-causality tests. GDP forecasts are established across the production, income and expenditure accounts within a disaggregated approach. This method merges the benefits of large-scale macroeconomic and small-scale factor models, rendering our Cluster of Dynamic Factor Models (CDFM) useful for model-consistent forecasting on a large scale. While the CDFM has a simple structure, its forecasts outperform those of a wide range of competing models and of professional forecasters. Moreover, the CDFM allows forecasters to introduce their own judgment and hence produce conditional forecasts.

Suggested Citation

  • Christian Glocker & Serguei Kaniovski, 2020. "Macroeconometric Forecasting Using a Cluster of Dynamic Factor Models," WIFO Working Papers 614, WIFO.
  • Handle: RePEc:wfo:wpaper:y:2020:i:614
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/66533
    File Function: Abstract
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brayton, Flint & Levin, Andrew & Lyon, Ralph & Williams, John C., 1997. "The evolution of macro models at the Federal Reserve Board," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 43-81, December.
    2. Christian Glocker & Serguei Kaniovski, 2014. "A financial market stress indicator for Austria," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(3), pages 481-504, August.
    3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Clive Granger & Yongil Jeon, 2004. "Forecasting Performance of Information Criteria with Many Macro Series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(10), pages 1227-1240.
    7. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    8. Majd, Saman & Pindyck, Robert S., 1987. "Time to build, option value, and investment decisions," Journal of Financial Economics, Elsevier, vol. 18(1), pages 7-27, March.
    9. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    10. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    11. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    12. Heilemann, Ullrich & Findeis, Hagen, 2012. "Empirical determination of aggregate demand and supply curves: The example of the RWI Business Cycle Model," Economic Modelling, Elsevier, vol. 29(2), pages 158-165.
    13. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    14. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    15. Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
    16. Robert Lehmann, 2021. "Forecasting exports across Europe: What are the superior survey indicators?," Empirical Economics, Springer, vol. 60(5), pages 2429-2453, May.
    17. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    18. Marcellino, Massimiliano & Sivec, Vasja, 2021. "Nowcasting Gdp Growth In A Small Open Economy," National Institute Economic Review, Cambridge University Press, vol. 256, pages 127-161, April.
    19. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    20. Esteves, Paulo Soares, 2013. "Direct vs bottom–up approach when forecasting GDP: Reconciling literature results with institutional practice," Economic Modelling, Elsevier, vol. 33(C), pages 416-420.
    21. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    22. Jushan Bai & Peng Wang, 2016. "Econometric Analysis of Large Factor Models," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 53-80, October.
    23. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & He, Xinhua & Liu, Rui & Liu, Shiguo & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2007. "A macroeconometric model of the Chinese economy," Economic Modelling, Elsevier, vol. 24(5), pages 814-822, September.
    24. Moser, Gabriel & Rumler, Fabio & Scharler, Johann, 2007. "Forecasting Austrian inflation," Economic Modelling, Elsevier, vol. 24(3), pages 470-480, May.
    25. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    26. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    27. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    28. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    29. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    30. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    31. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, April.
    32. Eitrheim, Oyvind & Husebo, Tore Anders & Nymoen, Ragnar, 1999. "Equilibrium-correction vs. differencing in macroeconometric forecasting," Economic Modelling, Elsevier, vol. 16(4), pages 515-544, December.
    33. Maximo Camacho & Gabriel Perez Quiros, 2011. "Spain‐Sting: Spain Short‐Term Indicator Of Growth," Manchester School, University of Manchester, vol. 79(s1), pages 594-616, June.
    34. Chunsheng Zhou, 2000. "Time-to-Build and Investment," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 273-282, May.
    35. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, November.
    36. Jennie Bai & Eric Ghysels & Jonathan H. Wright, 2013. "State Space Models and MIDAS Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 32(7), pages 779-813, October.
    37. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    38. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    39. Klein, Lawrence R. & Özmucur, Süleyman, 2010. "The use of consumer and business surveys in forecasting," Economic Modelling, Elsevier, vol. 27(6), pages 1453-1462, November.
    40. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    41. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    42. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
    43. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    44. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
    45. Bårdsen, Gunnar & den Reijer, Ard & Jonasson, Patrik & Nymoen, Ragnar, 2012. "MOSES: Model for studying the economy of Sweden," Economic Modelling, Elsevier, vol. 29(6), pages 2566-2582.
    46. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    47. Liu, Philip & Matheson, Troy & Romeu, Rafael, 2012. "Real-time forecasts of economic activity for Latin American economies," Economic Modelling, Elsevier, vol. 29(4), pages 1090-1098.
    48. repec:hal:journl:peer-00844811 is not listed on IDEAS
    49. Modugno, Michele & Soybilgen, Barış & Yazgan, Ege, 2016. "Nowcasting Turkish GDP and news decomposition," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1369-1384.
    50. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    51. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    52. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, vol. 42(1), pages 95-119, February.
    53. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    54. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    55. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    56. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
    57. Hammersland, Roger & Træe, Cathrine Bolstad, 2014. "The financial accelerator and the real economy: A small macroeconometric model for Norway with financial frictions," Economic Modelling, Elsevier, vol. 36(C), pages 517-537.
    58. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
    2. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    3. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    4. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    5. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    6. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    7. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    8. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    9. Caruso, Alberto, 2018. "Nowcasting with the help of foreign indicators: The case of Mexico," Economic Modelling, Elsevier, vol. 69(C), pages 160-168.
    10. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
    11. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    12. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
    13. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    14. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    15. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    16. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    17. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    18. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    19. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    20. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.

    More about this item

    Keywords

    Forecasting; Dynamic factor model; Granger causality; Structural modeling;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:wpaper:y:2020:i:614. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.