IDEAS home Printed from https://ideas.repec.org/p/tcb/wpaper/1209.html

Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis

Author

Listed:
  • Kurmas Akdogan
  • Selen Baser
  • Meltem Gulenay Chadwick
  • Dilara Ertug
  • Timur Hulagu
  • Sevim Kosem
  • Fethi Ogunc
  • M. Utku Ozmen
  • Necati Tekatli

Abstract

In this paper, we produce short term forecasts for the inflation in Turkey, using a large number of econometric models. In particular, we employ univariate models, decomposition based approaches (both in frequency and time domain), a Phillips curve motivated time varying parameter model, a suite of VAR and Bayesian VAR models and dynamic factor models. Our findings suggest that the models which incorporate more economic information outperform the benchmark random walk, and the relative performance of forecasts are on average 30 percent better for the first two quarters ahead. We further combine our forecasts by means of several weighting schemes. Results reveal that, the forecast combination leads to a reduction in forecast error compared to most of the models, although some of the individual models perform alike in certain horizons.

Suggested Citation

  • Kurmas Akdogan & Selen Baser & Meltem Gulenay Chadwick & Dilara Ertug & Timur Hulagu & Sevim Kosem & Fethi Ogunc & M. Utku Ozmen & Necati Tekatli, 2012. "Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis," Working Papers 1209, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  • Handle: RePEc:tcb:wpaper:1209
    as

    Download full text from publisher

    File URL: https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Publications/Research/Working+Paperss/2012/12-09
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    2. Shahzad Ahmad & Farooq Pasha, 2015. "A Pragmatic Model for Monetary Policy Analysis I: The Case of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 1-42.
    3. Carrera, Cesar & Ledesma, Alan, 2015. "Proyección de la inflación agregada con modelos de vectores autorregresivos bayesianos," Working Papers 2015-003, Banco Central de Reserva del Perú.
    4. Nyoni, Thabani & Nathaniel, Solomon Prince, 2018. "Modeling rates of inflation in Nigeria: an application of ARMA, ARIMA and GARCH models," MPRA Paper 91351, University Library of Munich, Germany.
    5. Christian Glocker & Serguei Kaniovski, 2022. "Macroeconometric forecasting using a cluster of dynamic factor models," Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
    6. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    7. Salisu, Afees A. & Isah, Kazeem O., 2018. "Predicting US inflation: Evidence from a new approach," Economic Modelling, Elsevier, vol. 71(C), pages 134-158.
    8. Muhammad Nadim Hanif & Muhammad Jahanzeb Malik, 2015. "Evaluating the Performance of Inflation Forecasting Models of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 43-78.
    9. Chronis, George A., 2016. "Modelling the extreme variability of the US Consumer Price Index inflation with a stable non-symmetric distribution," Economic Modelling, Elsevier, vol. 59(C), pages 271-277.
    10. Scarpel, Rodrigo Arnaldo, 2015. "An integrated mixture of local experts model for demand forecasting," International Journal of Production Economics, Elsevier, vol. 164(C), pages 35-42.
    11. Meri Papavangjeli, 2019. "Forecasting the Albanian short-term inflation through a Bayesian VAR model," IHEID Working Papers 16-2019, Economics Section, The Graduate Institute of International Studies, revised 09 Oct 2019.
    12. Cesar Carrera & Alan Ledesma, 2015. "Aggregate Inflation Forecast with Bayesian Vector Autoregressive Models," Working Papers 50, Peruvian Economic Association.
    13. Sergiy Nikolaychuk & Yurii Sholomytskyi, 2015. "Using Macroeconomic Models for Monetary Policy in Ukraine," Visnyk of the National Bank of Ukraine, National Bank of Ukraine, issue 233, pages 54-64.
    14. Fayyaz Hussain & Zafar Hayat, 2016. "Do Inflation Expectations Matter for Inflation Forecastability: Evidence from Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(3), pages 211-225.
    15. Krzysztof DRACHAL, 2020. "Forecasting the Inflation Rate in Poland and U.S. Using Dynamic Model Averaging (DMA) and Google Queries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 18-34, July.
    16. Magdalena Petrovska & Gani Ramadani & Nikola Naumovski & Biljana Jovanovic, 2017. "Forecasting Macedonian Inflation: Evaluation of different models for short-term forecasting," Working Papers 2017-06, National Bank of the Republic of North Macedonia.
    17. repec:mbr:jmonec:v:8:y:2013:i:4:p:1-17 is not listed on IDEAS
    18. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    19. Kurmaş Akdoğan, 2015. "Asymmetric Behaviour of Inflation around the Target in Inflation-Targeting Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 62(5), pages 486-504, November.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcb:wpaper:1209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sermet Pekin or Ilker Cakar or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tcmgvtr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.