IDEAS home Printed from https://ideas.repec.org/p/tcb/wpaper/1209.html
   My bibliography  Save this paper

Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis

Author

Listed:
  • Kurmas Akdogan
  • Selen Baser
  • Meltem Gulenay Chadwick
  • Dilara Ertug
  • Timur Hulagu
  • Sevim Kosem
  • Fethi Ogunc
  • M. Utku Ozmen
  • Necati Tekatli

Abstract

In this paper, we produce short term forecasts for the inflation in Turkey, using a large number of econometric models. In particular, we employ univariate models, decomposition based approaches (both in frequency and time domain), a Phillips curve motivated time varying parameter model, a suite of VAR and Bayesian VAR models and dynamic factor models. Our findings suggest that the models which incorporate more economic information outperform the benchmark random walk, and the relative performance of forecasts are on average 30 percent better for the first two quarters ahead. We further combine our forecasts by means of several weighting schemes. Results reveal that, the forecast combination leads to a reduction in forecast error compared to most of the models, although some of the individual models perform alike in certain horizons.

Suggested Citation

  • Kurmas Akdogan & Selen Baser & Meltem Gulenay Chadwick & Dilara Ertug & Timur Hulagu & Sevim Kosem & Fethi Ogunc & M. Utku Ozmen & Necati Tekatli, 2012. "Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis," Working Papers 1209, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  • Handle: RePEc:tcb:wpaper:1209
    as

    Download full text from publisher

    File URL: http://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Publications/Research/Working+Paperss/2012/12-09
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Balke, Nathan S & Fomby, Thomas B, 1997. "Threshold Cointegration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 627-645, August.
    2. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston, vol. 53.
    3. Arratibel, Olga & Leiner-Killinger, Nadine & Kamps, Christophe, 2009. "Inflation forecasting in the new EU Member States," Working Paper Series 1015, European Central Bank.
    4. Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
    5. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    6. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    7. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
    8. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    9. H. Çağrı AKKOYUN & Oğuz ATUK & N. Alpay KOÇAK & M. Utku ÖZMEN, 2012. "Filtering short term fluctuations in inflation analysis," Iktisat Isletme ve Finans, Bilgesel Yayincilik, vol. 27(319), pages 31-52.
    10. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2010. "Combining the forecasts in the ECB survey of professional forecasters: can anything beat the simple average?," Working Paper Series 1277, European Central Bank.
    11. repec:hal:journl:peer-00844811 is not listed on IDEAS
    12. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    13. A. Özlem Önder, 2004. "Forecasting Inflation in Emerging Markets by Using the Phillips Curve and Alternative Time Series Models," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 40(2), pages 71-82, March.
    14. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    15. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    16. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    17. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    18. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    19. Kapetanios, George & Labhard, Vincent & Price, Simon, 2006. "Forecasting using predictive likelihood model averaging," Economics Letters, Elsevier, vol. 91(3), pages 373-379, June.
    20. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    21. Francisco Marcos Rodrigues Figueiredo, 2010. "Forecasting Brazilian Inflation Using a Large Data Set," Working Papers Series 228, Central Bank of Brazil, Research Department.
    22. Swanson, Norman R & Zeng, Tian, 2001. "Choosing among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 425-440, September.
    23. Hansen, Bruce E, 1997. "Approximate Asymptotic P Values for Structural-Change Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 60-67, January.
    24. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    25. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    26. Caesar Lack, 2006. "Forecasting Swiss inflation using VAR models," Economic Studies 2006-02, Swiss National Bank.
    27. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    28. Fethi Ogunc & Cagri Sarikaya, 2011. "Gorunmez Ama Hissedilmez Degil : Turkiye'de Cikti Acigi," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 11(2), pages 15-28.
    29. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    30. Hofmann, Boris, 2009. "Do monetary indicators lead euro area inflation?," Journal of International Money and Finance, Elsevier, vol. 28(7), pages 1165-1181, November.
    31. Fethi Ogunc, 2010. "Turkiye'de Islenmemis Gida Enflasyonunda Oynaklik : Durum Tespiti," CBT Research Notes in Economics 1005, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    32. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    33. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, Oxford University Press, vol. 102(4), pages 797-814.
    34. Chris Bloor, 2009. "The use of statistical forecasting models at the Reserve Bank of New Zealand," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 72, pages 21-26, June.
    35. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, Elsevier.
    36. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
    37. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    38. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, Elsevier.
    39. James H. Stock & Mark W. Watson, 2005. "Has inflation become harder to forecast?," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    40. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    41. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cesar Carrera & Alan Ledesma, 2015. "Aggregate Inflation Forecast with Bayesian Vector Autoregressive Models," Working Papers 2015-50, Peruvian Economic Association.
    2. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    3. Hanif, Muhammad Nadim & Malik, Muhammad Jahanzeb, 2015. "Evaluating Performance of Inflation Forecasting Models of Pakistan," MPRA Paper 66843, University Library of Munich, Germany.
    4. Shahzad Ahmad & Farooq Pasha, 2015. "A Pragmatic Model for Monetary Policy Analysis I: The Case of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 1-42.
    5. Magdalena Petrovska & Gani Ramadani & Nikola Naumovski & Biljana Jovanovic, 2017. "Forecasting Macedonian Inflation: Evaluation of different models for short-term forecasting," Working Papers 2017-06, National Bank of the Republic of Macedonia.
    6. Afees A. Salisu & Kazeem Isah, 2017. "Predicting US Inflation: Evidence from a New Approach," Working Papers 039, Centre for Econometric and Allied Research, University of Ibadan.
    7. repec:pid:journl:v:55:y:2016:i:3:p:211-225 is not listed on IDEAS
    8. Scarpel, Rodrigo Arnaldo, 2015. "An integrated mixture of local experts model for demand forecasting," International Journal of Production Economics, Elsevier, vol. 164(C), pages 35-42.
    9. Carrera, Cesar & Ledesma, Alan, 2015. "Proyección de la inflación agregada con modelos de vectores autorregresivos bayesianos," Working Papers 2015-003, Banco Central de Reserva del Perú.
    10. Kurmaş Akdoğan, 2015. "Asymmetric Behaviour of Inflation around the Target in Inflation-Targeting Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 62(5), pages 486-504, November.
    11. Chronis, George A., 2016. "Modelling the extreme variability of the US Consumer Price Index inflation with a stable non-symmetric distribution," Economic Modelling, Elsevier, vol. 59(C), pages 271-277.

    More about this item

    Keywords

    Short-term Forecasting; Forecast Combination;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcb:wpaper:1209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ozlem Ekmekciler Ramalho Rocha) or (Ilker Cakar). General contact details of provider: http://edirc.repec.org/data/tcmgvtr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.