IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2020i2p18-34.html
   My bibliography  Save this article

Forecasting the Inflation Rate in Poland and U.S. Using Dynamic Model Averaging (DMA) and Google Queries

Author

Listed:
  • Krzysztof DRACHAL

    ( Kozminski University, Warszawa, Poland)

Abstract

The purpose of this paper is to apply the recently proposed Dynamic Model Averaging (DMA) to modelling the inflation rate in U.S. and Poland with the additional analysis of the usefulness of Google Trends data. One of the analysed economies is quite uniform, but the time-series available for it are quite short. The second is the developed leading economy. It is found that in the case of U.S. the DMA methodology is quite useful and produces more accurate forecasts than the alternative ones. In particular, all features of DMA (i.e., model averaging, time-varying parameters, dynamically updated weights in model averaging) improve the forecast quality. Similar analysis for Poland does not lead to such conclusions. As two types of models are considered for the U.S. (with long and short time-series) it can be suspected that the problem with applying DMA to the Polish economy comes from the length of the available time-series. Anyway, in the case of U.S. inflation the DMA produced interesting outcomes, i.e., time-varying inflation drivers could have been identified. The practical implications for Poland are that unemployment rate is the major driver of inflation. For the U.S., the drivers are change in number of new houses, money supply, stock prices, energy prices, industrial production and level of short-term interest rate, government longterm bond yield and term spread.

Suggested Citation

  • Krzysztof DRACHAL, 2020. "Forecasting the Inflation Rate in Poland and U.S. Using Dynamic Model Averaging (DMA) and Google Queries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 18-34, July.
  • Handle: RePEc:rjr:romjef:v::y:2020:i:2:p:18-34
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef2_20/rjef2_2020p18-34.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012. "Does Forecast Combination Improve Norges Bank Inflation Forecasts?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, April.
    2. Hibiki Ichiue & Takushi Kurozumi & Takeki Sunakawa, 2013. "Inflation Dynamics And Labor Market Specifications: A Bayesian Dynamic Stochastic General Equilibrium Approach For Japan'S Economy," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 273-287, January.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    4. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    5. Graeme Chamberlin, 2010. "Googling the present," Economic & Labour Market Review, Palgrave Macmillan;Office for National Statistics, vol. 4(12), pages 59-95, December.
    6. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    7. Horváth, Roman & Komárek, Luboš & Rozsypal, Filip, 2011. "Does money help predict inflation? An empirical assessment for Central Europe," Economic Systems, Elsevier, vol. 35(4), pages 523-536.
    8. Zhi Su, 2014. "Chinese Online Unemployment-Related Searches and Macroeconomic Indicators," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 9(4), pages 573-605, December.
    9. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    10. Gary Koop & Luca Onorante, 2019. "Macroeconomic Nowcasting Using Google Probabilities☆," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 17-40, Emerald Group Publishing Limited.
    11. Ferreira, Diego & Palma, Andreza Aparecida, 2015. "Forecasting Inflation with the Phillips Curve: A Dynamic Model Averaging Approach for Brazil," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 69(4), December.
    12. Welfe, Aleksander, 2000. "Modeling inflation in Poland," Economic Modelling, Elsevier, vol. 17(3), pages 375-385, August.
    13. Canova, Fabio & Ferroni, Filippo, 2012. "The dynamics of US inflation: Can monetary policy explain the changes?," Journal of Econometrics, Elsevier, vol. 167(1), pages 47-60.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Mehmet Balcilar & Rangan Gupta & Charl Jooste, 2017. "Long memory, economic policy uncertainty and forecasting US inflation: a Bayesian VARFIMA approach," Applied Economics, Taylor & Francis Journals, vol. 49(11), pages 1047-1054, March.
    16. Gabriele Di Filippo, 2015. "Dynamic Model Averaging and CPI Inflation Forecasts: A Comparison between the Euro Area and the United States," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 619-648, December.
    17. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    18. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    19. Byung-Yeon Kim, 2008. "Modeling Inflation in Poland: A Structural Cointegration Approach," Eastern European Economics, Taylor & Francis Journals, vol. 46(6), pages 60-69, November.
    20. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
    21. Welfe, Aleksander & Majsterek, Michal, 2002. "Wage and Price Inflation in Poland in the Period of Transition: The Cointegration Analysis," Economic Change and Restructuring, Springer, vol. 35(3), pages 205-219.
    22. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    23. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
    24. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    25. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    26. Amisano, Gianni & Fagan, Gabriel, 2013. "Money growth and inflation: A regime switching approach," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 118-145.
    27. Vugar Ahmadov & Salman Huseynov & Shaig Adigozalov & Fuad Mammadov & Vugar Rahimov, 2018. "Forecasting inflation in post-oil boom years: A case for regime switches?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(2), pages 369-385, April.
    28. Piotr Ciżkowicz & Andrzej Rzońca, 2015. "Inflation Targeting and its Discontents: The Case of Poland," Acta Oeconomica, Akadémiai Kiadó, Hungary, vol. 65(supplemen), pages 107-122, December.
    29. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    30. Teles, Vladimir Kühl & Zaidan, Marta, 2010. "Taylor principle and inflation stability in emerging market countries," Journal of Development Economics, Elsevier, vol. 91(1), pages 180-183, January.
    31. Valcarcel, Victor J. & Wohar, Mark E., 2013. "Changes in the oil price-inflation pass-through," Journal of Economics and Business, Elsevier, vol. 68(C), pages 24-42.
    32. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    33. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    34. Michał Majsterek & Aleksander Welfe, 2012. "Price-wage nexus and the role of a tax system," Economic Change and Restructuring, Springer, vol. 45(1), pages 121-133, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    2. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    3. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    4. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    5. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    6. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    7. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    8. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," Working Papers 2020-04, Joint Research Centre, European Commission.
    9. Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
    10. Emmanuel O. Akande & Elijah O. Akanni & Oyedamola F. Taiwo & Jeremiah D. Joshua & Abel Anthony, 2023. "Predicting inflation component drivers in Nigeria: a stacked ensemble approach," SN Business & Economics, Springer, vol. 3(1), pages 1-32, January.
    11. Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
    12. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    13. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    14. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    15. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
    16. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    17. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    18. Charemza, Wojciech & Díaz, Carlos & Makarova, Svetlana, 2019. "Quasi ex-ante inflation forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 35(3), pages 994-1007.
    19. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    20. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.

    More about this item

    Keywords

    CPI; data-rich models; inflation; model averaging; nowcasting; Poland; U.S;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2020:i:2:p:18-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.