IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i2p809-826.html
   My bibliography  Save this article

Nowcasting food inflation with a massive amount of online prices

Author

Listed:
  • Macias, Paweł
  • Stelmasiak, Damian
  • Szafranek, Karol

Abstract

The consensus in the literature on providing accurate inflation forecasts underlines the importance of precise nowcasts. In this paper, we focus on this issue by employing a unique, extensive dataset of online food and non-alcoholic beverages prices gathered automatically from the webpages of major online retailers in Poland since 2009. We perform a real-time nowcasting experiment by using a highly disaggregated framework among popular, simple univariate approaches. We demonstrate that pure estimates of online price changes are already effective in nowcasting food inflation, but accounting for online food prices in a simple, recursively optimized model delivers further gains in the nowcast accuracy. Our framework outperforms various other approaches, including judgmental methods, traditional benchmarks, and model combinations. After the outbreak of the COVID-19 pandemic, its nowcasting quality has improved compared to other approaches and remained comparable with judgmental nowcasts. We also show that nowcast accuracy increases with the volume of online data, but their quality and relevance are essential for providing accurate in-sample fit and out-of-sample nowcasts. We conclude that online prices can markedly aid the decision-making process at central banks.

Suggested Citation

  • Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:809-826
    DOI: 10.1016/j.ijforecast.2022.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920702200036X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binner, Jane M. & Elger, C. Thomas & Nilsson, Birger & Tepper, Jonathan A., 2006. "Predictable non-linearities in U.S. inflation," Economics Letters, Elsevier, vol. 93(3), pages 323-328, December.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    3. David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
    4. Yuriy Gorodnichenko & Viacheslav Sheremirov & Oleksandr Talavera, 2018. "Price Setting in Online Markets: Does IT Click?," Journal of the European Economic Association, European Economic Association, vol. 16(6), pages 1764-1811.
    5. Alberto Cavallo, 2017. "Are Online and Offline Prices Similar? Evidence from Large Multi-channel Retailers," American Economic Review, American Economic Association, vol. 107(1), pages 283-303, January.
    6. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    7. Yuriy Gorodnichenko & Oleksandr Talavera, 2017. "Price Setting in Online Markets: Basic Facts, International Comparisons, and Cross-Border Integration," American Economic Review, American Economic Association, vol. 107(1), pages 249-282, January.
    8. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    9. Alberto Cavallo, 2018. "Scraped Data and Sticky Prices," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 105-119, March.
    10. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    11. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    12. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
    13. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
    14. Rumler, Fabio & Valderrama, Maria Teresa, 2010. "Comparing the New Keynesian Phillips Curve with time series models to forecast inflation," The North American Journal of Economics and Finance, Elsevier, vol. 21(2), pages 126-144, August.
    15. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    16. Libero Monteforte & Gianluca Moretti, 2013. "Real‐Time Forecasts of Inflation: The Role of Financial Variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
    17. Jelke Bethlehem, 2010. "Selection Bias in Web Surveys," International Statistical Review, International Statistical Institute, vol. 78(2), pages 161-188, August.
    18. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    19. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    20. Modugno, Michele, 2013. "Now-casting inflation using high frequency data," International Journal of Forecasting, Elsevier, vol. 29(4), pages 664-675.
    21. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    22. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    23. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    24. Cavallo, Alberto, 2013. "Online and official price indexes: Measuring Argentina's inflation," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 152-165.
    25. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    26. Edward S. Knotek & Saeed Zaman, 2017. "Nowcasting U.S. Headline and Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 931-968, August.
    27. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    28. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    29. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    30. Karol Szafranek & Aleksandra Hałka, 2019. "Determinants of Low Inflation in an Emerging, Small Open Economy through the Lens of Aggregated and Disaggregated Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(13), pages 3094-3111, October.
    31. Duarte, Claudia & Rua, Antonio, 2007. "Forecasting inflation through a bottom-up approach: How bottom is bottom?," Economic Modelling, Elsevier, vol. 24(6), pages 941-953, November.
    32. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    33. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    34. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
    35. Jaravel, Xavier & O'Connell, Martin, 2020. "Real-time price indices: Inflation spike and falling product variety during the Great Lockdown," Journal of Public Economics, Elsevier, vol. 191(C).
    36. Diego Aparicio & Zachary Metzman & Roberto Rigobon, 2021. "The Pricing Strategies of Online Grocery Retailers," NBER Working Papers 28639, National Bureau of Economic Research, Inc.
    37. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    38. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    39. Ben Powell & Guy Nason & Duncan Elliott & Matthew Mayhew & Jennifer Davies & Joe Winton, 2018. "Tracking and modelling prices using web‐scraped price microdata: towards automated daily consumer price index forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 737-756, June.
    40. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    41. Kichian, Maral & Rumler, Fabio, 2014. "Forecasting Canadian inflation: A semi-structural NKPC approach," Economic Modelling, Elsevier, vol. 43(C), pages 183-191.
    42. Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
    43. Damian Stelmasiak & Grzegorz Szafrański, 2016. "Forecasting the Polish Inflation Using Bayesian VAR Models with Seasonality," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 21-42, March.
    44. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    45. McAdam, Peter & McNelis, Paul, 2005. "Forecasting inflation with thick models and neural networks," Economic Modelling, Elsevier, vol. 22(5), pages 848-867, September.
    46. Gorodnichenko, Yuriy & Sheremirov, Viacheslav & Talavera, Oleksandr, 2018. "The responses of internet retail prices to aggregate shocks: A high-frequency approach," Economics Letters, Elsevier, vol. 164(C), pages 124-127.
    47. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.
    48. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    49. Austan D. Goolsbee & Peter J. Klenow, 2018. "Internet Rising, Prices Falling: Measuring Inflation in a World of E-Commerce," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 488-492, May.
    50. Paweł Macias & Damian Stelmasiak, 2019. "Food inflation nowcasting with web scraped data," NBP Working Papers 302, Narodowy Bank Polski.
    51. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    52. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    53. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    54. Patrick Lünnemann & Ladislav Wintr, 2011. "Price Stickiness in the US and Europe Revisited: Evidence from Internet Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 593-621, October.
    55. Austan D. Goolsbee & Peter J. Klenow, 2018. "Internet Rising, Prices Falling: Measuring Inflation in a World of E-Commerce," NBER Working Papers 24649, National Bureau of Economic Research, Inc.
    56. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ecb:ecbdps:202323 is not listed on IDEAS
    2. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    3. Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023. "Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany," Discussion Papers 34/2023, Deutsche Bundesbank.
    4. Dedola, Luca & Ehrmann, Michael & Hoffmann, Peter & Lamo, Ana & Paz-Pardo, Gonzalo & Slacalek, Jiri & Strasser, Georg, 2023. "Digitalisation and the economy," Working Paper Series 2809, European Central Bank.
    5. Barış Soybilgen & M. Ege Yazgan & Hüseyin Kaya, 2023. "Nowcasting Turkish Food Inflation Using Daily Online Prices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 171-190, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    2. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    3. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    4. Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023. "Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany," Discussion Papers 34/2023, Deutsche Bundesbank.
    5. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    6. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    7. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    8. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    9. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    10. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    13. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    17. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    18. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    19. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    20. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:809-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.