Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.latcb.2023.100087
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003.
"Do financial variables help forecasting inflation and real activity in the euro area?,"
Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
- Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
- Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
- Forni, Mario & Lippi, Marco, 2001.
"The Generalized Dynamic Factor Model: Representation Theory,"
Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
- Lippi, Marco & Forni, Mario, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Minella, Andre & de Freitas, Paulo Springer & Goldfajn, Ilan & Muinhos, Marcelo Kfoury, 2003.
"Inflation targeting in Brazil: constructing credibility under exchange rate volatility,"
Journal of International Money and Finance, Elsevier, vol. 22(7), pages 1015-1040, December.
- André Minella & Paulo Springer de Freitas & Ilan Goldfajn & Marcelo Kfoury Muinhos, 2003. "Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility," Working Papers Series 77, Central Bank of Brazil, Research Department.
- André Minella & Paulo Springer de Freitas & Ilan Goldfajn & Marcelo Kfoury Muinhos, 2003. "Inflation Targeting in Brazil: Constructing Credibility Under Exchange Rate Volatility," Anais do XXXI Encontro Nacional de Economia [Proceedings of the 31st Brazilian Economics Meeting] b26, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- MINELLA André & DE FREITAS Paulo Springer & GOLDFAJN Ilan & KFOURY MUINHOS Marcelo, 2010. "Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility," EcoMod2003 330700103, EcoMod.
- Andres–Escayola, Erik & Berganza, Juan Carlos & Campos, Rodolfo G. & Molina, Luis, 2023.
"A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
- Erik Andres-Escayola & Juan Carlos Berganza & Rodolfo Campos & Luis Molina, 2021. "A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico," Occasional Papers 2114, Banco de España.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006.
"A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
- Stock, James & Watson, Mark & Marcellino, Massimiliano, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
- Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Svensson, L.E.O., 1993.
"Monetary Policy with Flexible Exchange Rates and Foreward Interest Rates as Indicators,"
Papers
559, Stockholm - International Economic Studies.
- Lars E.O. Svensson, 1994. "Monetary Policy with Flexible Exchange Rates and Forward Interest Rates as Indicators," NBER Working Papers 4633, National Bureau of Economic Research, Inc.
- Svensson, Lars E O, 1994. "Monetary Policy with Flexible Exchange Rates and Forward Interest Rates as Indicators," CEPR Discussion Papers 941, C.E.P.R. Discussion Papers.
- Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
- repec:fgv:epgrbe:v:66:n:3:a:2 is not listed on IDEAS
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Giacomini, Raffaella & Issler, João Victor & Skreta, Vasiliki, 2022.
"Incentive-driven inattention,"
Journal of Econometrics, Elsevier, vol. 231(1), pages 188-212.
- Wagner Piazza Gaglianone & Raffaella Giacomini & João Victor Issler & Vasiliki Skreta, 2018. "Incentive-driven Inattention," Working Papers Series 485, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Giacomini, Raffaella & Issler, João Victor & Skreta, Vasiliki, 2019. "Incentive-driven Inattention," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 811, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Skreta, Vasiliki & Giacomini, Raffaella & Gaglianone, Wagner & Issler, Joao, 2019. "Incentive-driven Inattention," CEPR Discussion Papers 13619, C.E.P.R. Discussion Papers.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Flávio de Freitas Val & Gustavo Silva Araujo, 2022. "Breakeven Inflation Rate Estimation: an alternative approach considering indexation lag and seasonality," Working Papers Series 493, Central Bank of Brazil, Research Department.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
- Libero Monteforte & Gianluca Moretti, 2013.
"Real‐Time Forecasts of Inflation: The Role of Financial Variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
- Libero Monteforte & Gianluca Moretti, "undated". "Real time forecasts of inflation: the role of financial variables," Working Papers wp2011-6, Department of the Treasury, Ministry of the Economy and of Finance.
- Libero Monteforte & Gianluca Moretti, 2010. "Real time forecasts of inflation: the role of financial variables," Temi di discussione (Economic working papers) 767, Bank of Italy, Economic Research and International Relations Area.
- Morales-Arias, Leonardo & Moura, Guilherme V., 2013.
"Adaptive forecasting of exchange rates with panel data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
- Leonardo Morales-Arias & Alexander Dross, 2010. "Adaptive Forecasting of Exchange Rates with Panel Data," Research Paper Series 285, Quantitative Finance Research Centre, University of Technology, Sydney.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Koenker,Roger, 2005.
"Quantile Regression,"
Cambridge Books,
Cambridge University Press, number 9780521845731, November.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, November.
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Ferreira, Miguel A. & Santa-Clara, Pedro, 2011.
"Forecasting stock market returns: The sum of the parts is more than the whole,"
Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
- Miguel A. Ferreira & Pedro Santa-Clara, 2008. "Forecasting Stock Market Returns: The Sum of the Parts is More than the Whole," NBER Working Papers 14571, National Bureau of Economic Research, Inc.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Machado, Vicente da Gama & Portugal, Marcelo Savino, 2014.
"Measuring inflation persistence in Brazil using a multivariate model,"
Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(2), June.
- Vicente da Gama Machado & Marcelo Savino Portugal, 2013. "Measuring Inflation Persistence in Brazil Using a Multivariate Model," Working Papers Series 331, Central Bank of Brazil, Research Department.
- Arruda, Elano Ferreira & Ferreira, Roberto Tatiwa & Castelar, Ivan, 2011.
"Modelos Lineares e Não Lineares da Curva de Phillips para Previsão da Taxa de Inflação no Brasil,"
Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 65(3), September.
- Elano Ferreira Arruda & Roberto Tatiwa Ferreira & Ivan Castelar, 2008. "Modelos lineares e não lineares da curva de Phillips para previsão da taxa de Inflação no Brasil," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807211607140, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Emanuel Kohlscheen, 2021.
"What does machine learning say about the drivers of inflation?,"
BIS Working Papers
980, Bank for International Settlements.
- Emanuel Kohlscheen, 2022. "What does machine learning say about the drivers of inflation?," Papers 2208.14653, arXiv.org, revised Jan 2023.
- Kohlscheen, Emanuel, 2012.
"Uma nota sobre erros de previsão da inflação de curto-prazo,"
Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 66(3), October.
- Emanuel Kohlscheen, 2010. "Uma Nota sobre Erros de Previsão da Inflação de Curto Prazo," Working Papers Series 227, Central Bank of Brazil, Research Department.
- Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014.
"An empirical comparison of alternative schemes for combining electricity spot price forecasts,"
Energy Economics, Elsevier, vol. 46(C), pages 395-412.
- Jakub Nowotarski & Eran Raviv & Stefan Trueck & Rafal Weron, 2013. "An empirical comparison of alternate schemes for combining electricity spot price forecasts," HSC Research Reports HSC/13/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Ang, Andrew & Bekaert, Geert & Wei, Min, 2007.
"Do macro variables, asset markets, or surveys forecast inflation better?,"
Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
- Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
- Andrew Ang & Geert Bekaert & Min Wei, 2006. "Do macro variables, asset markets, or surveys forecast inflation better?," Finance and Economics Discussion Series 2006-15, Board of Governors of the Federal Reserve System (U.S.).
- Luiz Renato Lima & Fanning Meng, 2017. "Out‐of‐Sample Return Predictability: A Quantile Combination Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 877-895, June.
- Chuanliang Jiang & Esfandiar Maasoumi & Zhijie Xiao, 2020. "Quantile aggregation and combination for stock return prediction," Econometric Reviews, Taylor & Francis Journals, vol. 39(7), pages 715-743, August.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017.
"Applying a microfounded-forecasting approach to predict Brazilian inflation,"
Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2016. "Applying a Microfounded-Forecasting Approach to Predict Brazilian Inflation," Working Papers Series 436, Central Bank of Brazil, Research Department.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- repec:fgv:epgrbe:v:68:n:2:a:4 is not listed on IDEAS
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021.
"Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
- Marcelo Madeiros & Gabriel Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2019. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Working Papers Central Bank of Chile 834, Central Bank of Chile.
- Sin, Hui Lok & Gaglianone, Wagner Piazza, 2006. "Stochastic simulation of a DSGE model for Brazil," MPRA Paper 20853, University Library of Munich, Germany.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
- Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
- Medeiros, Marcelo C & Vasconcelos, Gabriel & Freitas, Eduardo, 2016. "Forecasting Brazilian Inflation with High-Dimensional Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(2), November.
- Silvio Michael de Azevedo Costa, 2016. "Structural Trends and Cycles in a DSGE Model for Brazil," Working Papers Series 434, Central Bank of Brazil, Research Department.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Jushan Bai & Pierre Perron, 2003.
"Computation and analysis of multiple structural change models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
- BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
- Tom Doan, "undated". "MULTIPLEBREAKS: RATS procedure to perform multiple structural change analysis," Statistical Software Components RTS00138, Boston College Department of Economics.
- Tom Doan, "undated". "RATS programs to replicate examples of Bai-Perron procedure," Statistical Software Components RTZ00008, Boston College Department of Economics.
- Tom Doan, "undated". "BAIPERRON: RATS procedure to perform Bai-Perron Test for Multiple Structural Changes," Statistical Software Components RTS00013, Boston College Department of Economics.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
- Joao Vitor Matos Goncalves & Michel Alexandre & Gilberto Tadeu Lima, 2023. "ARIMA and LSTM: A Comparative Analysis of Financial Time Series Forecasting," Working Papers, Department of Economics 2023_13, University of São Paulo (FEA-USP).
- Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Lorenzo Menculini & Andrea Marini & Massimiliano Proietti & Alberto Garinei & Alessio Bozza & Cecilia Moretti & Marcello Marconi, 2021. "Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices," Forecasting, MDPI, vol. 3(3), pages 1-19, September.
- Marta Baltar Moreira Areosa & Wagner Piazza Gaglianone, 2023. "Anchoring Long-term VAR Forecasts Based On Survey Data and State-space Models," Working Papers Series 574, Central Bank of Brazil, Research Department.
- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
- Vadim Grishchenko & Ivan Krylov, 2024. "New Approaches to Measuring, Analysing, and Forecasting Prices: A Review of the Bank of Russia, NES, and HSE University Workshop," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 92-111, June.
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2017.
"An adaptive approach to forecasting three key macroeconomic variables for transitional China,"
Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2015. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," BOFIT Discussion Papers 12/2015, Bank of Finland Institute for Emerging Economies (BOFIT).
- Linlin Niu & Xiu Xu & Ying Chen, 2015. "An Adaptive Approach to Forecasting Three Key Macroeconomic Variables for Transitional China," SFB 649 Discussion Papers SFB649DP2015-023, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021.
"Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Pablo Guerróon‐Quintana & Molin Zhong, 2023.
"Macroeconomic forecasting in times of crises,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
- Pablo Guerrón-Quintana & Molin Zhong, 2017. "Macroeconomic Forecasting in Times of Crises," Finance and Economics Discussion Series 2017-018, Board of Governors of the Federal Reserve System (U.S.).
- repec:zbw:bofitp:2015_012 is not listed on IDEAS
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Edward S. Knotek & Saeed Zaman, 2017.
"Nowcasting U.S. Headline and Core Inflation,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 931-968, August.
- Edward S. Knotek & Saeed Zaman, 2014. "Nowcasting U.S. Headline and Core Inflation," Working Papers (Old Series) 1403, Federal Reserve Bank of Cleveland.
More about this item
Keywords
Machine learning; Big data; Inflation forecasting;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lajcba:v:4:y:2023:i:2:s2666143823000042. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/latin-american-journal-of-central-banking .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.