IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2015-012.html
   My bibliography  Save this paper

FRED-MD: A Monthly Database for Macroeconomic Research

Author

Listed:
  • McCracken, Michael W.

    () (Federal Reserve Bank of St. Louis)

  • Ng, Serena

    () (Department of Economics, Columbia University)

Abstract

This paper describes a large, monthly frequency, macroeconomic database with the goal of establishing a convenient starting point for empirical analysis that requires "big data." The dataset mimics the coverage of those already used in the literature but has three appealing features. First, it is designed to be updated monthly using the FRED database. Second, it will be publicly accessible, facilitating comparison of related research and replication of empirical work. Third, it will relieve researchers from having to manage data changes and revisions. We show that factors extracted from our dataset share the same predictive content as those based on various vintages of the so-called Stock-Watson dataset. In addition, we suggest that diffusion indexes constructed as the partial sum of the factor estimates can potentially be useful for the study of business cycle chronology.

Suggested Citation

  • McCracken, Michael W. & Ng, Serena, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis, revised 20 Aug 2015.
  • Handle: RePEc:fip:fedlwp:2015-012
    as

    Download full text from publisher

    File URL: https://research.stlouisfed.org/wp/2015/2015-012.pdf
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Stock, James H. & Watson, Mark W., 2014. "Estimating turning points using large data sets," Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
    3. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    6. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    7. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    8. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    9. repec:taf:jnlbes:v:30:y:2012:i:1:p:53-66 is not listed on IDEAS
    10. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    11. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    14. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    15. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    16. Geoffrey H. Moore, 1961. "Introduction to "Business Cycle Indicators, Volume 1"," NBER Chapters,in: Business Cycle Indicators, Volume 1, pages -13--1 National Bureau of Economic Research, Inc.
    17. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
    18. repec:hrv:faseco:33192198 is not listed on IDEAS
    19. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    20. Geoffrey H. Moore, 1961. "Business Cycle Indicators, Volume 1," NBER Books, National Bureau of Economic Research, Inc, number moor61-1, September.
    21. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    22. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    23. Stark, Tom & Croushore, Dean, 2002. "Reply to the comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 563-567, December.
    24. Geoffrey H. Moore, 1961. "Appendices to "Business Cycle Indicators, Volume 1"," NBER Chapters,in: Business Cycle Indicators, Volume 1, pages 669-767 National Bureau of Economic Research, Inc.
    25. Geoffrey H. Moore, 1961. "Introductory pages to "Business Cycle Indicators, Volume 1"," NBER Chapters,in: Business Cycle Indicators, Volume 1, pages -35--15 National Bureau of Economic Research, Inc.
    26. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    27. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    diffusion index; forecasting; big data; factors.;

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2015-012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Oates). General contact details of provider: http://edirc.repec.org/data/frbslus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.