IDEAS home Printed from https://ideas.repec.org/p/bcb/wpaper/227.html

Uma Nota sobre Erros de Previsão da Inflação de Curto Prazo

Author

Listed:
  • Emanuel Kohlscheen

Abstract

This note shows that the unbiasedness and the weak rationality hypotheses are not rejected for the inflation forecasts surveyed by the Central Bank when the forecast horizon is one month. However, as in other countries, a clear pattern of auto-correlation of forecast errors is found. Furthermore, increases (decreases) in inflation are systematically associated with underestimations (overestimations) of inflation in the following month. This is true for both, the full sample of forecasters and the sample that is restricted to the 5 institutions with best forecasting performance, suggesting that models in which past realizations of inflation have greater weight in the formation of average expectations are more accurate than the assumption of rational expectations. Models aimed at explaining how expectations are formed should be able to explain these stylized facts as well as the hysteresis of forecasts.

Suggested Citation

  • Emanuel Kohlscheen, 2010. "Uma Nota sobre Erros de Previsão da Inflação de Curto Prazo," Working Papers Series 227, Central Bank of Brazil, Research Department.
  • Handle: RePEc:bcb:wpaper:227
    as

    Download full text from publisher

    File URL: https://www.bcb.gov.br/content/publicacoes/WorkingPaperSeries/TD227.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabak, Benjamin M. & Takami, Marcelo & Rocha, Jadson M.C. & Cajueiro, Daniel O. & Souza, Sergio R.S., 2014. "Directed clustering coefficient as a measure of systemic risk in complex banking networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 211-216.
    2. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    3. Daniela Kubudi & José Valentim Vicente, 2016. "A Joint Model of Nominal and Real Yield Curves," Working Papers Series 452, Central Bank of Brazil, Research Department.
    4. Kohlscheen, Emanuel, 2012. "Uma nota sobre erros de previsão da inflação de curto-prazo," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 66(3), October.
    5. Marta Baltar Moreira Areosa & Wagner Piazza Gaglianone, 2023. "Anchoring Long-term VAR Forecasts Based On Survey Data and State-space Models," Working Papers Series 574, Central Bank of Brazil, Research Department.
    6. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    7. Leilane de Freitas Rocha Cambara & Roberto Meurer, Gilberto Tadeu Lima, 2019. "Deviating from Perfect Foresight but not from Theoretical Consistency: The Behavior of Inflation Expectations in Brazil," Working Papers, Department of Economics 2019_36, University of São Paulo (FEA-USP).
    8. Cambara, Leilane de Freitas Rocha & Meurer, Roberto & Lima, Gilberto Tadeu, 2022. "Deviating from full rationality but not from theoretical consistency: The behavior of inflation expectations in Brazil," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 492-501.
    9. repec:fgv:epgrbe:v:66:n:3:a:2 is not listed on IDEAS
    10. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcb:wpaper:227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Barbone Gonzalez (email available below). General contact details of provider: https://www.bcb.gov.br/en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.