IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

Now-Casting and the Real-Time Data Flow

  • Martha Banbura
  • Domenico Giannone
  • Michèle Modugno
  • Lucrezia Reichlin

The term now-casting is a contraction for now and forecasting and has been used for a long-time in meteorology and recently also in economics. In this paper we survey recent developments in economic now-casting with special focus on those models that formalize key features of how market participants and policy makers read macroeconomic data releases in real time, which involves: monitoring many data, forming expectations about them and revising the assessment on the state of the economy whenever realizations diverge sizeably from those expectations. (Prepared for G. Elliott and A. Timmermann, eds., Handbook of Economic Forecasting, Volume 2, Elsevier-North Holland). JEL Classification: E32, E37, C01, C33, C53

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/125192/1/2012-026-BANBURA_GIANNONE_MODUGNO_REICHLIN-nowcasting.pdf
File Function: 2012-026-BANBURA_GIANNONE_MODUGNO_REICHLIN-nowcasting
Download Restriction: no

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number ECARES 2012-026.

as
in new window

Length: 52 p.
Date of creation: Aug 2012
Date of revision:
Publication status: Published by:
Handle: RePEc:eca:wpaper:2013/125192
Contact details of provider: Postal:
Av. F.D., Roosevelt, 39, 1050 Bruxelles

Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Katja Drechsel & Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
  2. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 0674, European Central Bank.
  3. David de Antonio Liedo & Elena Fernández Muñoz, 2010. "Nowcasting Spanish GDP growth in real time: "One and a half months earlier"," Working Papers 1037, Banco de España;Working Papers Homepage.
  4. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  5. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
  6. Antonello D'Agostino & Kieran McQuinn & Derry O’Brien, 2012. "Nowcasting Irish GDP," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing,Centre for International Research on Economic Tendency Surveys, vol. 2012(2), pages 21-31.
  7. repec:hal:journl:peer-00844811 is not listed on IDEAS
  8. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
  9. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
  10. Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity In Real Time: The Role Of Confidence Indicators," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 90-97, October.
  11. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
  12. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2012. "Rare shocks, great recessions," Staff Reports 585, Federal Reserve Bank of New York.
  13. Martin D. D. Evans(Georgetown University and NBER), 2005. "Where Are We Now? Real-time Estimates of the Macro Economy," Working Papers gueconwpa~05-05-02, Georgetown University, Department of Economics.
  14. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  15. Maximo Camacho & Gabriel Perez-Quiros, 2008. "Introducing the EURO-STING: Short Term INdicator of Euro Area Growth," Working Papers 0807, Banco de España;Working Papers Homepage.
  16. Chris Bloor & Troy Matheson, 2009. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/02, Reserve Bank of New Zealand.
  17. Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI), Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  18. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
  19. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  20. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
  21. Altissimo, Filippo & Cristadoro, Riccardo & Forni, Mario & Lippi, Marco & Veronese, Giovanni, 2006. "New EuroCOIN: Tracking Economic Growth in Real Time," CEPR Discussion Papers 5633, C.E.P.R. Discussion Papers.
  22. Rachida Ouysse, 2011. "Comparison of Bayesian moving Average and Principal Component Forecast for Large Dimensional Factor Models," Discussion Papers 2012-03, School of Economics, The University of New South Wales.
  23. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
  24. Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
  25. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, 03.
  26. Boriss Siliverstovs & Konstantin A. Kholodilin, 2010. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Discussion Papers of DIW Berlin 970, DIW Berlin, German Institute for Economic Research.
  27. Katerina Arnostova & David Havrlant & Lubos Ruzicka & Peter Toth, 2010. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Working Papers 2010/12, Czech National Bank, Research Department.
  28. Hahn, Elke & Skudelny, Frauke, 2008. "Early estimates of euro area real GDP growth: a bottom up approach from the production side," Working Paper Series 0975, European Central Bank.
  29. Troy Matheson, 2011. "New Indicators for Tracking Growth in Real Time," IMF Working Papers 11/43, International Monetary Fund.
  30. Jasper de Winter, 2011. "Forecasting GDP growth in times of crisis: private sector forecasts versus statistical models," DNB Working Papers 320, Netherlands Central Bank, Research Department.
  31. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  32. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
  33. Modugno, Michele, 2011. "Nowcasting inflation using high frequency data," Working Paper Series 1324, European Central Bank.
  34. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  35. Mario Forni & Domenico Giannone & Marco Lippi & Lucrezia Reichlin, 2008. "Opening the Black Box: Structural Factor Models with Large Cross-Sections," Working Papers ECARES 2008_036, ULB -- Universite Libre de Bruxelles.
  36. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
  37. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  38. Liebermann, Joëlle, 2012. "Short-term forecasting of quarterly gross domestic product growth," Quarterly Bulletin Articles, Central Bank of Ireland, pages 74-84, February.
  39. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14, pages C25-C44, 02.
  40. Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
  41. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2013. "Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility," Temi di discussione (Economic working papers) 896, Bank of Italy, Economic Research and International Relations Area.
  42. Patton, Andrew J & Timmermann, Allan G, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," CEPR Discussion Papers 8194, C.E.P.R. Discussion Papers.
  43. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
  44. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  45. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  46. McCracken, Michael W. & Owyang, Michael T. & Sekhposyan, Tatevik, 2015. "Real-Time Forecasting with a Large, Mixed Frequency, Bayesian VAR," Working Papers 2015-30, Federal Reserve Bank of St. Louis.
  47. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  48. Byeongchan Seong & Sung K. Ahn & Peter Zadrozny, 2007. "Cointegration Analysis with Mixed-Frequency Data," CESifo Working Paper Series 1939, CESifo Group Munich.
  49. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, vol. 42(1), pages 95-119, February.
  50. Kajal Lahiri & George Monokroussos, 2011. "Nowcasting US GDP: The role of ISM Business Surveys," Discussion Papers 11-01, University at Albany, SUNY, Department of Economics.
  51. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
  52. Elena Angelini & Marta Banbura & Gerhard Rünstler, 2010. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing,Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-22.
  53. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
  54. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
  55. Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
  56. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, 04.
  57. Tommaso Proietti & Filippo Moauro, 2004. "Dynamic Factor Analysis with Nonlinear Temporal Aggregation Constraints," Econometrics 0401003, EconWPA.
  58. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
  59. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
  60. Banbura, Marta & Rünstler, Gerhard, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 0751, European Central Bank.
  61. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
  62. Mario Forno & Marco Lippi & Lucrezia Reichlin & Filippo Altissimo & Antonio Bassanetti, 2003. "Eurocoin: A Real Time Coincident Indicator Of The Euro Area Business Cycle," Computing in Economics and Finance 2003 242, Society for Computational Economics.
  63. Tommaso Proietti, 2011. "Estimation of Common Factors under Cross‐Sectional and Temporal Aggregation Constraints," International Statistical Review, International Statistical Institute, vol. 79(3), pages 455-476, December.
  64. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
  65. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2011. "EUROMIND: a monthly indicator of the euro area economic conditions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 439-470, 04.
  66. Troy Matheson, 2007. "An analysis of the informational content of New Zealand data releases: the importance of business opinion surveys," Reserve Bank of New Zealand Discussion Paper Series DP2007/13, Reserve Bank of New Zealand.
  67. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  68. Wolak, Frank A., 1989. "Testing inequality constraints in linear econometric models," Journal of Econometrics, Elsevier, vol. 41(2), pages 205-235, June.
  69. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  70. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, 08.
  71. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
  72. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, 02.
  73. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  74. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/125192. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.