IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Real-time forecasting in a data-rich environment

  • Liebermann, Joelle

    (Central Bank of Ireland)

This paper assesses the ability of different models to forecast key real and nominal U.S.monthly macroeconomic variables in a data-rich environment from the perspective of a realtime forecaster, i.e. taking into account the real-time data revisions process and data fl ow. We find that for the real variables predictability is confined over the recent recession/crisis period. This is in line with the findings of D'Agostino and Giannone (2012) that gains in relative performance of models using large datasets over univariate models are driven by downturn periods which are characterized by higher comovements. Regarding in flation, results are stable across time, but predictability is mainly found at the very short-term horizons. In flation is known to be hard to forecast, but by exploiting timely information one obtains gains at nowcasting and forecasting one-month ahead, especially with Bayesian VARs. Furthermore, for both real and nominal variables, the direct pooling of information using a high dimensional model (dynamic factor model or Bayesian VAR) which takes into account the cross-correlation between the variables and efficiently deals with the "ragged edge" structure of the dataset, yields more accurate forecasts than the indirect pooling of bi-variate forecasts/models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Central Bank of Ireland in its series Research Technical Papers with number 07/RT/12.

in new window

Date of creation: Dec 2012
Date of revision:
Handle: RePEc:cbi:wpaper:07/rt/12
Contact details of provider: Postal: P.O. Box No. 559, Dame Street, Dublin 2
Phone: (01) 671 6666
Fax: (01) 671 6561
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
  2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
  3. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
  4. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
  5. Tatevik Sekhposyan & Barbara Rossi, 2008. "Has modelsí forecasting performance for US output growth and inflation changed over time, and when?," Working Papers 09-02, Duke University, Department of Economics.
  6. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
  7. Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajsek, 2011. "Credit Spreads as Predictors of Real-Time Economic Activity: A Bayesian Model-Averaging Approach," NBER Working Papers 16725, National Bureau of Economic Research, Inc.
  8. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  9. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-68, November.
  10. James H. Stock & Mark W. Watson, 2010. "Modeling Inflation After the Crisis," NBER Working Papers 16488, National Bureau of Economic Research, Inc.
  11. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper Series 42_10, The Rimini Centre for Economic Analysis.
  12. Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481, April.
  13. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, July.
  14. Banbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
  15. D’Agostino, Antonello & Giannone, Domenico, 2006. "Comparing alternative predictors based on large-panel factor models," Working Paper Series 0680, European Central Bank.
  16. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  17. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
  18. Daniel F. Waggoner & Tao Zha, 1998. "Conditional forecasts in dynamic multivariate models," FRB Atlanta Working Paper 98-22, Federal Reserve Bank of Atlanta.
  19. Liebermann, Joelle, 2011. "Real-Time Nowcasting of GDP: Factor Model versus Professional Forecasters," Research Technical Papers 3/RT/11, Central Bank of Ireland.
  20. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  21. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2007. "A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering," CEPR Discussion Papers 6043, C.E.P.R. Discussion Papers.
  22. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, 01.
  23. Chanont Banternghansa & Michael W. McCracken, 2011. "Real-time forecast averaging with ALFRED," Review, Federal Reserve Bank of St. Louis, issue Jan, pages 49-66.
  24. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  25. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  26. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 0700, European Central Bank.
  27. Karl Whelan & Antonello D'Agostino, 2008. "Federal Reserve information during the great moderation," Open Access publications 10197/252, School of Economics, University College Dublin.
  28. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  29. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
  30. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
  31. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  32. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2010. "Short-Term Inflation Projections: a Bayesian Vector Autoregressive approach," CEPR Discussion Papers 7746, C.E.P.R. Discussion Papers.
  33. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
  34. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, EconWPA.
  35. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1986. "Forecasting and conditional projection using realistic prior distribution," Staff Report 93, Federal Reserve Bank of Minneapolis.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cbi:wpaper:07/rt/12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Smith)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.