IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP

  • Vladimir Kuzin
  • Massimiliano Marcellino
  • Christian Schumacher

This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to di¤erent sampling frequencies and publication delays. Two model classes suited in this context are factor models based on large datasets and mixed-data sampling (MIDAS) regressions with few predictors. The specification of these models requires several choices related to, amongst others, the factor estimation method and the number of factors, lag length and indicator selection. Thus, there are many sources of mis-specification when selecting a particular model, and an alternative could be pooling over a large set of models with di¤erent specifications. We evaluate the relative performance of pooling and model selection for now- and forecasting quarterly German GDP, a key macroeconomic indicator for the largest country in the euro area, with a large set of about one hundred monthly indicators. Our empirical findings provide strong support for pooling over many speci.cations rather than selecting a specific model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cadmus.eui.eu/dspace/bitstream/1814/10681/1/ECO_2009_13.pdf
File Function: main text
Download Restriction: no

Paper provided by European University Institute in its series Economics Working Papers with number ECO2009/13.

as
in new window

Length:
Date of creation: 2009
Date of revision:
Handle: RePEc:eui:euiwps:eco2009/13
Contact details of provider: Postal:
Badia Fiesolana, Via dei Roccettini, 9, 50014 San Domenico di Fiesole (FI) Italy

Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page: http://www.eui.eu/ECO/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  2. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
  3. D’Agostino, Antonello & Giannone, Domenico & Surico, Paolo, 2006. "(Un)Predictability and macroeconomic stability," Working Paper Series 0605, European Central Bank.
  4. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, 04.
  5. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  6. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Economics Working Papers ECO2008/16, European University Institute.
  7. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
  8. Anthony Garratt & Gary Koop & Emi Mise & Shaun Vahey, 2008. "Real-time Prediction with UK Monetary Aggregates in the Presence of Model Uncertainty," Reserve Bank of New Zealand Discussion Paper Series DP2008/13, Reserve Bank of New Zealand.
  9. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," NBER Working Papers 11285, National Bureau of Economic Research, Inc.
  10. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  11. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
  12. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  13. David Hendry & Guillaume Chevillon, 2004. "Non-Parametric Direct Multi-step Estimation for Forecasting Economic Processes," Economics Series Working Papers 196, University of Oxford, Department of Economics.
  14. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  15. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," Working Papers 284, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  16. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, 03.
  17. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
  18. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  19. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
  20. Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank, Research Centre.
  21. Katrin Assenmacher-Wesche & M. Hashem Pesaran, 2008. "Forecasting the Swiss Economy Using VECX* Models: An Exercise in Forecast Combination Across Modelsand Observation Windows," Working Papers 2008-03, Swiss National Bank.
  22. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2003. "Leading Indicators for Euro Area Inflation and GDP Growth," CEPR Discussion Papers 3893, C.E.P.R. Discussion Papers.
  23. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  24. Campbell, Sean D., 2007. "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence From the Survey of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 191-200, April.
  25. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  26. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  27. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  28. Banbura, Marta & Rünstler, Gerhard, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 0751, European Central Bank.
  29. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2007. "New Eurocoin: Tracking Economic Growth in Real Time," Temi di discussione (Economic working papers) 631, Bank of Italy, Economic Research and International Relations Area.
  30. Marcellino, Massimiliano, 2002. "Forecast Pooling for Short Time Series of Macroeconomic Variables," CEPR Discussion Papers 3313, C.E.P.R. Discussion Papers.
  31. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  32. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  33. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
  34. Anindya Banerjee & Massimiliano Marcellino, 2003. "Are There Any Reliable Leading Indicators for U.S. Inflation and GDP Growth?," Working Papers 236, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  35. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
  36. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  37. George Kapetanios & Vincent Labhard & Simon Price, 2007. "Forecast combination and the Bank of England’s suite of statistical forecasting models," Bank of England working papers 323, Bank of England.
  38. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  39. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  40. Helmut Lütkepohl & Ralf Brüggemann, 2006. "A small monetary system for the euro area based on German data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 683-702.
  41. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  42. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
  43. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  44. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
  45. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  46. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Economics Working Papers ECO2008/17, European University Institute.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2009/13. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Banks)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.