IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Changes in predictive ability with mixed frequency data

Listed author(s):
  • Galvão, Ana Beatriz

When assessing the predictive power of financial variables for economic activity, researchers usually aggregate higher-frequency data before estimating a forecasting model that assumes the relationship between the financial variable and the dependent variable to be linear. This paper proposes a model called smooth transition mixed data sampling (STMIDAS) regression, which relaxes both of these assumptions. Simulation exercises indicate that the improvements in forecasting accuracy from the use of mixed data sampling are larger in nonlinear than in linear specifications. When forecasting output growth with financial variables in real time, statistically significant improvements over a linear regression are more likely to arise from forecasting with STMIDAS than with MIDAS regressions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 29 (2013)
Issue (Month): 3 ()
Pages: 395-410

in new window

Handle: RePEc:eee:intfor:v:29:y:2013:i:3:p:395-410
DOI: 10.1016/j.ijforecast.2012.10.006
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Hamilton, James D & Kim, Dong Heon, 2002. "A Reexamination of the Predictability of Economic Activity Using the Yield Spread," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 340-360, May.
  2. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
  3. Inoue, Atsushi & Kilian, Lutz, 2003. "On the Selection of Forecasting Models," CEPR Discussion Papers 3809, C.E.P.R. Discussion Papers.
  4. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  5. Andrew Ang & Monika Piazzesi & Min Wei, 2004. "What Does the Yield Curve Tell us about GDP Growth?," NBER Working Papers 10672, National Bureau of Economic Research, Inc.
  6. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155, December.
  7. Marcellino, Massimiliano & Stock, James H & Watson, Mark W, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
  8. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
  9. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, issue Nov, pages 521-536.
  10. Heather M. Anderson & George Athanasopoulos & Farshid Vahid, 2002. "Nonlinear Autoregresssive Leading Indicator Models of Output in G-7 Countries," Monash Econometrics and Business Statistics Working Papers 20/02, Monash University, Department of Econometrics and Business Statistics.
  11. Pesaran, M.H. & Timmermann, A., 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," Cambridge Working Papers in Economics 0331, Faculty of Economics, University of Cambridge.
  12. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
  13. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
  14. Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 04 Nov 2004.
  15. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
  16. Raffaella Giacomini & Barbara Rossi, 2006. "How Stable is the Forecasting Performance of the Yield Curve for Output Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 783-795, December.
  17. Arturo Estrella & Frederic S. Mishkin, 1996. "Predicting U.S. recessions: financial variables as leading indicators," Research Paper 9609, Federal Reserve Bank of New York.
  18. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
  19. Inoue, Atsushi & Kilian, Lutz, 2002. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," CEPR Discussion Papers 3671, C.E.P.R. Discussion Papers.
  20. Faust, Jon & Rogers, John H. & H. Wright, Jonathan, 2003. "Exchange rate forecasting: the errors we've really made," Journal of International Economics, Elsevier, vol. 60(1), pages 35-59, May.
  21. Todd E. Clark & Michael W. McCracken, 2007. "Tests of equal predictive ability with real-time data," Research Working Paper RWP 07-06, Federal Reserve Bank of Kansas City.
  22. Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
  23. John W. Galbraith & Greg Tkacz, 1999. "Testing For Asymmetry In The Link Between The Yield Spread And Output In The G-7 Countries," Departmental Working Papers 1999-02, McGill University, Department of Economics.
  24. Anderson, Heather M. & Vahid, Farshid, 2001. "Predicting The Probability Of A Recession With Nonlinear Autoregressive Leading-Indicator Models," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 482-505, September.
  25. Tatevik Sekhposyan & Barbara Rossi, 2009. "Has Economic Modelsí Forecasting Performance for US Output Growth and Inflation Changed Over Time, and When?," Working Papers 09-06, Duke University, Department of Economics.
  26. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," SSE/EFI Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
  27. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  28. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  29. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
  30. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  31. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  32. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  33. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
  34. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CEPR Discussion Papers 4830, C.E.P.R. Discussion Papers.
  35. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
  36. Arturo Estrella & Gikas A. Hardouvelis, 1989. "The term structure as a predictor of real economic activity," Research Paper 8907, Federal Reserve Bank of New York.
  37. Carrasco, Marine, 2002. "Misspecified Structural Change, Threshold, and Markov-switching models," Journal of Econometrics, Elsevier, vol. 109(2), pages 239-273, August.
  38. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
  39. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
  40. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
  41. Ralf Becker & Denise Osborn, 2007. "Weighted smooth transition regressions," The School of Economics Discussion Paper Series 0724, Economics, The University of Manchester.
  42. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  43. Birgit Strikholm & Timo Teräsvirta, 2006. "A sequential procedure for determining the number of regimes in a threshold autoregressive model," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 472-491, November.
  44. Zellner, Arnold & Hong, Chansik & Min, Chung-ki, 1991. "Forecasting turning points in international output growth rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling techniques," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 275-304.
  45. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2007. "Regression Models with Mixed Sampling Frequencies," University of Cyprus Working Papers in Economics 8-2007, University of Cyprus Department of Economics.
  46. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
  47. Ana Beatriz C. Galvao, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487.
  48. Barbara Rossi & Tatevik Sekhposyan, 2010. "Has Models' Forecasting Performance for US Output Growth and Inflation Changed over Time, and When?," Working Papers 10-16, Duke University, Department of Economics.
  49. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:29:y:2013:i:3:p:395-410. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.