IDEAS home Printed from https://ideas.repec.org/p/duk/dukeec/08-4.html
   My bibliography  Save this paper

Forecast Comparisons in Unstable Environments

Author

Listed:
  • Giacomini, Raffaella
  • Rossi, Barbara

Abstract

We propose new methods for comparing the relative out-of-sample forecasting performance of two competing models in the presence of possible instabilities. The main idea is to develop a measure of the relative ìlocal forecasting performanceî for the two models, and to investigate its stability over time by means of statistical tests. We propose two tests (the ìFluctuation testî and the test against a ìOne-time Reversalî) that analyze the evolution of the modelsí relative performance over historical samples. In contrast to previous approaches to forecast comparison, which are based on measures of ìglobal performanceî, we focus on the entire time path of the modelsí relative performance, which may contain useful information that is lost when looking for the model that forecasts best on average. We apply our tests to the analysis of the time variation in the out-of-sample forecasting performance of monetary models of exchange rate determination relative to the random walk.

Suggested Citation

  • Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
  • Handle: RePEc:duk:dukeec:08-4
    as

    Download full text from publisher

    File URL: http://www.econ.duke.edu/~brossi/GiacominiRossi08.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    4. Rossi, Barbara, 2006. "Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability," Macroeconomic Dynamics, Cambridge University Press, vol. 10(01), pages 20-38, February.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    6. Kilian, Lutz & Taylor, Mark P., 2003. "Why is it so difficult to beat the random walk forecast of exchange rates?," Journal of International Economics, Elsevier, vol. 60(1), pages 85-107, May.
    7. Rossi, Barbara, 2005. "Optimal Tests For Nested Model Selection With Underlying Parameter Instability," Econometric Theory, Cambridge University Press, vol. 21(05), pages 962-990, October.
    8. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    9. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    10. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    11. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    12. Raffaella Giacomini & Barbara Rossi, 2016. "Model Comparisons In Unstable Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 369-392, May.
    13. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    16. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    17. Barbara Rossi, 2005. "Testing Long-Horizon Predictive Ability With High Persistence, And The Meese-Rogoff Puzzle," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(1), pages 61-92, February.
    18. Chu, C.S.J. & Hornik, K. & Kuan, C.M., 1993. "Mosum Tests for Parameter Constancy," Papers 9319, Southern California - Department of Economics.
    19. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    20. Graham Elliott & Allan Timmermann, 2005. "Optimal Forecast Combination Under Regime Switching ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1081-1102, November.
    21. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    22. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    23. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Predictive Ability Testing; Instability; Structural Change; Forecast Evaluation;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:duk:dukeec:08-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Department of Economics Webmaster). General contact details of provider: http://econ.duke.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.