IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i4p1263-1272.html
   My bibliography  Save this article

Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis

Author

Listed:
  • Hassani, Hossein
  • Rua, António
  • Silva, Emmanuel Sirimal
  • Thomakos, Dimitrios

Abstract

The literature on mixed-frequency models is relatively recent and has found applications across economics and finance. The standard application in economics considers the use of (usually) monthly variables (e.g. industrial production) for predicting/fitting quarterly variables (e.g. real GDP). This paper proposes a multivariate singular spectrum analysis (MSSA) based method for mixed-frequency interpolation and forecasting, which can be used for any mixed-frequency combination. The novelty of the proposed approach rests on the grounds of simplicity within the MSSA framework. We present our method using a combination of monthly and quarterly series and apply MSSA decomposition and reconstruction to obtain monthly estimates and forecasts for the quarterly series. Our empirical application shows that the suggested approach works well, as it offers forecasting improvements on a dataset of eleven developed countries over the last 50 years. The implications for mixed-frequency modelling and forecasting, and useful extensions of this method, are also discussed.

Suggested Citation

  • Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1263-1272
    DOI: 10.1016/j.ijforecast.2019.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019301311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2019.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Santos Silva, J. M. C. & Cardoso, F. N., 2001. "The Chow-Lin method using dynamic models," Economic Modelling, Elsevier, vol. 18(2), pages 269-280, April.
    3. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    4. Silva, Emmanuel Sirimal & Ghodsi, Zara & Ghodsi, Mansi & Heravi, Saeed & Hassani, Hossein, 2017. "Cross country relations in European tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 151-168.
    5. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    6. Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
    7. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    8. Hossein Hassani & Saeed Heravi & Anatoly Zhigljavsky, 2013. "Forecasting UK Industrial Production with Multivariate Singular Spectrum Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 395-408, August.
    9. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    11. Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
    12. Kerry Patterson & Hossein Hassani & Saeed Heravi & Anatoly Zhigljavsky, 2011. "Multivariate singular spectrum analysis for forecasting revisions to real-time data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2183-2211.
    13. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    14. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    15. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    16. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    17. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    18. Marcellino, Massimiliano & Sivec, Vasja, 2016. "Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
    19. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    20. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
    21. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    22. Libero Monteforte & Gianluca Moretti, 2013. "Real‐Time Forecasts of Inflation: The Role of Financial Variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
    23. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    24. Papailias, Fotis & Thomakos, Dimitrios, 2017. "EXSSA: SSA-based reconstruction of time series via exponential smoothing of covariance eigenvalues," International Journal of Forecasting, Elsevier, vol. 33(1), pages 214-229.
    25. de Carvalho, Miguel & Rodrigues, Paulo C. & Rua, António, 2012. "Tracking the US business cycle with a singular spectrum analysis," Economics Letters, Elsevier, vol. 114(1), pages 32-35.
    26. Liu, H & Hall, Stephen G, 2001. "Creating High-Frequency National Accounts with State-Space Modelling: A Monte Carlo Experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 441-449, September.
    27. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    28. Hossein Hassani & Abdol S. Soofi & Anatoly Zhigljavsky, 2013. "Predicting inflation dynamics with singular spectrum analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 743-760, June.
    29. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    30. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    31. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    32. Hossein Hassani & Saeed Heravi & Gary Brown & Daniel Ayoubkhani, 2013. "Forecasting before, during, and after recession with singular spectrum analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(10), pages 2290-2302, October.
    33. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    34. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    35. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    36. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    37. Emmanuel Sirimal Silva & Hossein Hassani & Saeed Heravi, 2018. "Modeling European industrial production with multivariate singular spectrum analysis: A cross†industry analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 371-384, April.
    38. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    39. Lisi, Francesco & Medio, Alfredo, 1997. "Is a random walk the best exchange rate predictor?," International Journal of Forecasting, Elsevier, vol. 13(2), pages 255-267, June.
    40. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    41. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Nowcasting industrial production using linear and non-linear models of electricity demand," Energy Economics, Elsevier, vol. 126(C).
    2. Mohammad Reza Yeganegi & Hossein Hassani & Rangan Gupta, 2023. "The ENSO cycle and forecastability of global inflation and output growth: Evidence from standard and mixed‐frequency multivariate singular spectrum analyses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1690-1707, November.
    3. Mahdi Kalantari & Hossein Hassani, 2019. "Automatic Grouping in Singular Spectrum Analysis," Forecasting, MDPI, vol. 1(1), pages 1-16, October.
    4. Qifa Xu & Zezhou Wang & Cuixia Jiang & Yezheng Liu, 2023. "Deep learning on mixed frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2099-2120, December.
    5. Hossein Hassani & Mohammad Reza Yeganegi & Xu Huang, 2021. "Fusing Nature with Computational Science for Optimal Signal Extraction," Stats, MDPI, vol. 4(1), pages 1-15, January.
    6. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    2. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    3. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    6. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    7. Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
    8. Silva, Emmanuel Sirimal & Ghodsi, Zara & Ghodsi, Mansi & Heravi, Saeed & Hassani, Hossein, 2017. "Cross country relations in European tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 151-168.
    9. Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
    10. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    11. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    12. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    13. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
    14. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    15. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    16. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    17. Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
    18. Guay, Alain & Maurin, Alain, 2015. "Disaggregation methods based on MIDAS regression," Economic Modelling, Elsevier, vol. 50(C), pages 123-129.
    19. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    20. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1263-1272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.