IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v1y2019i1p13-204d281648.html
   My bibliography  Save this article

Automatic Grouping in Singular Spectrum Analysis

Author

Listed:
  • Mahdi Kalantari

    (Department of Statistics, Payame Noor University, Tehran 19395-4697, Iran)

  • Hossein Hassani

    (Research Institute of Energy Management and Planning (RIEMP), University of Tehran, Tehran 1417466191, Iran)

Abstract

Singular spectrum analysis (SSA) is a non-parametric forecasting and filtering method that has many applications in a variety of fields such as signal processing, economics and time series analysis. One of the four steps of the SSA, which is called the grouping step, plays a pivotal role in the SSA because reconstruction and forecasting of results are directly affected by the outputs of this step. Usually, the grouping step of SSA is time consuming as the interpretable components are manually selected. An alternative more optimized approach is to apply automatic grouping methods. In this paper, a new dissimilarity measure between two components of a time series that is based on various matrix norms is first proposed. Then, using the new dissimilarity matrices, the capabilities of different hierarchical clustering linkages are compared to identify appropriate groups in the SSA grouping step. The performance of the proposed approach is assessed using the corrected Rand index as validation criterion and utilizing various real-world and simulated time series.

Suggested Citation

  • Mahdi Kalantari & Hossein Hassani, 2019. "Automatic Grouping in Singular Spectrum Analysis," Forecasting, MDPI, vol. 1(1), pages 1-16, October.
  • Handle: RePEc:gam:jforec:v:1:y:2019:i:1:p:13-204:d:281648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/1/1/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/1/1/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golyandina, Nina & Korobeynikov, Anton & Shlemov, Alex & Usevich, Konstantin, 2015. "Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i02).
    2. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    3. Silva, Emmanuel Sirimal & Ghodsi, Zara & Ghodsi, Mansi & Heravi, Saeed & Hassani, Hossein, 2017. "Cross country relations in European tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 151-168.
    4. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    5. Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
    6. Lahmiri, Salim, 2018. "Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 444-451.
    7. Golyandina, Nina & Korobeynikov, Anton, 2014. "Basic Singular Spectrum Analysis and forecasting with R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 934-954.
    8. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    9. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
    10. Emmanuel Sirimal Silva & Hossein Hassani & Saeed Heravi, 2018. "Modeling European industrial production with multivariate singular spectrum analysis: A cross†industry analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 371-384, April.
    11. Arteche, Josu & García-Enríquez, Javier, 2017. "Singular Spectrum Analysis for signal extraction in Stochastic Volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 85-98.
    12. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
    13. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    14. Khan, M. Atikur Rahman & Poskitt, D.S., 2017. "Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and application," International Journal of Forecasting, Elsevier, vol. 33(1), pages 199-213.
    15. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    16. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    17. Andreas Groth & Michael Ghil, 2017. "Synchronization of world economic activity," Post-Print hal-01701086, HAL.
    18. Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luka Crnogorac & Rade Tokalić & Zoran Gligorić & Aleksandar Milutinović & Suzana Lutovac & Aleksandar Ganić, 2021. "Gate Road Support Deformation Forecasting Based on Multivariate Singular Spectrum Analysis and Fuzzy Time Series," Energies, MDPI, vol. 14(12), pages 1-20, June.
    2. Olga Bureneva & Nikolay Safyannikov & Zoya Aleksanyan, 2022. "Singular Spectrum Analysis of Tremorograms for Human Neuromotor Reaction Estimation," Mathematics, MDPI, vol. 10(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Hossein Hassani & Mahdi Kalantari & Zara Ghodsi, 2019. "Evaluating the Performance of Multiple Imputation Methods for Handling Missing Values in Time Series Data: A Study Focused on East Africa, Soil-Carbonate-Stable Isotope Data," Stats, MDPI, vol. 2(4), pages 1-11, December.
    3. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    4. Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
    5. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    6. Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Nowcasting industrial production using linear and non-linear models of electricity demand," Energy Economics, Elsevier, vol. 126(C).
    7. Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
    8. Mohammad Reza Yeganegi & Hossein Hassani & Rangan Gupta, 2023. "The ENSO cycle and forecastability of global inflation and output growth: Evidence from standard and mixed‐frequency multivariate singular spectrum analyses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1690-1707, November.
    9. de Carvalho, Miguel & Martos, Gabriel, 2020. "Brexit: Tracking and disentangling the sentiment towards leaving the EU," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1128-1137.
    10. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
    11. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    12. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    13. repec:ipg:wpaper:2014-480 is not listed on IDEAS
    14. Silva, Emmanuel Sirimal & Hassani, Hossein, 2022. "‘Modelling’ UK tourism demand using fashion retail sales," Annals of Tourism Research, Elsevier, vol. 95(C).
    15. Telesca, Luciano & Laib, Mohamed & Guignard, Fabian & Mauree, Dasaraden & Kanevski, Mikhail, 2019. "Linearity versus non-linearity in high frequency multilevel wind time series measured in urban areas," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 234-244.
    16. Hossein Hassani & Mohammad Reza Yeganegi & Xu Huang, 2021. "Fusing Nature with Computational Science for Optimal Signal Extraction," Stats, MDPI, vol. 4(1), pages 1-15, January.
    17. Tang, Wenjin & Bu, Hui & Ji, Yuqiong & Li, Zhongfei, 2024. "Market uncertainty and information content in complex seasonality of prices," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
    18. repec:ipg:wpaper:2014-546 is not listed on IDEAS
    19. Zhongxin Ni & Xing Lu & Wenjun Xue, 2021. "Does the belt and road initiative resolve the steel overcapacity in China? Evidence from a dynamic model averaging approach," Empirical Economics, Springer, vol. 61(1), pages 279-307, July.
    20. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    21. Donghua Wang & Yang Xin & Xiaohui Chang & Xingze Su, 2021. "Realized volatility forecasting and volatility spillovers: Evidence from Chinese non‐ferrous metals futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2713-2731, April.
    22. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:1:y:2019:i:1:p:13-204:d:281648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.